Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System halts computer viruses, worms, before end-user stage

12.11.2003


Scanning all of Shakespeare in 1/60th of a second


John Lockwood, Ph.D., assistant professor of computer science and engineering, programs the data enabling device to thwart the SoBig worm. Lockwood and his graduate students have approached the problem of halting worms and viruses via hardware instead of software. When a virus or worm is detected, the system either can drop the malicious traffic or generate a pop-up message on an end-user’s computer.



A computer scientist at Washington University in St. Louis has developed technology to stop malicious software - malware - such as viruses and worms long before it even has a chance to reach computers in the home and office.

John Lockwood, Ph.D., an assistant professor of computer science at Washington University, and the graduate students that work in his research laboratory have developed a hardware platform called the Field-programmable Port Extender (FPX) that scans for malware transmitted over a network and filters out unwanted data.



"The FPX uses several patented technologies in order to scan for the signatures of malware quickly," said Lockwood. "Unlike existing network intrusion systems, the FPX uses hardware, not software, to scan data quickly. The FPX can scan each and every byte of every data packet transmitted through a network at a rate of 2.4 billion bits per second. In other words, the FPX could scan every word in the entire works of Shakespeare in about 1/60th of a second."

Lockwood published his results in Military and Aerospace Programmable Logic Device (MALPD), Sept.,2003.

The paper is dowloadable online at:
http://www.arl.wustl.edu/~lockwood/publications/MAPLD_2003_e10_lockwood_p.pdf.

Computer virus and Internet worm attacks are aggravating, costly, and a threat to our homeland security. Recent attacks by Nimba, Code Red, Slammer, SoBigF, and MSBlast have infected computers globally, clogged large computer networks, and degraded corporate productivity. It can take weeks to months for Information Technology staff to clean up all of the computers throughout a network after an outbreak. The direct cost to recover from just the ’Code Red version two’ worm alone was $2.6 billion.

The United States has come to depend on computers to support its critical infrastructure. The nation’s power system, financial networks, and military infrastructure all rely on computers to operate. As a form of terrorism, a foreign agent could introduce a malignant worm or virus disguised as benign data to attack computers throughout a network. Terrorists could use this malware to bring down crucial components of our corporate infrastructure and military.

In much the same way that a human virus spreads between people that come in contact, computer viruses and Internet worms spread when computers come in contact over the Internet. Viruses spread when a computer user downloads unsafe software, opens a malicious attachment, or exchanges infected computer programs over a network. An Internet Worm spreads over the network automatically when malicious software exploits one or more vulnerabilities in an operating system, a Web server, a database application, or an email exchange system.

Existing firewalls do little to protect against such attacks. Once a few systems are compromised, they proceed to infect other machines, which in turn quickly spread throughout a network.

"As is the case with the spread of a contagious disease like SARS, the number of infected computers will grow exponentially unless contained," Lockwood said. "The speed of today’s computers and vast reach of the Internet, however, make a computer virus or Internet worm spread much faster than human diseases. In the case of SoBigF, over one million computers were infected within the first 24 hours and over 200 million computers were infected within a week."

Today, most Internet worms and viruses are not detected until after they reach an end-user’s personal computer. It is difficult for companies, universities, and government agencies to maintain network-wide security.

Unfair burden on end-users

"Placing the burden of detection on the end -user isn’t efficient or trustworthy because individuals tend to ignore warnings about installing new protection software and the latest security updates, "Lockwood pointed out. "New vulnerabilities are discovered daily, but not all users take the time to download new patches the moment they are posted. It can take weeks for an IT department to eradicate old versions of vulnerable software running on end-system computers."

The high speed of the FPX is possible because the logic on the FPX is implemented as Field Programmable Gate Array (FPGA) circuits, Lockwood explained. These circuits are used to scan and filter Internet traffic for worms and viruses using FPGA circuits that operate in parallel. Lockwood’s group has developed and implemented circuits that process the Internet protocol (IP) packets directly in hardware. They also have developed several circuits that rapidly scan streams of data for strings or regular expressions in order to find the signatures of malware carried within the payload of Internet packets.

"On the FPX, the reconfigurable hardware can be dynamically reconfigured over the network to search for new attack patterns," Lockwood said. "Should a new Internet worm or virus be detected, multiple FPX devices can be immediately programmed to search for their signatures. Each FPX device then filters traffic passing over the network, so that it can immediately quarantine a virus or Internet worms within sub networks (subnets). By just installing a few such devices between subnets, a single device can protect thousands of users. By installing multiple devices at key locations throughout a network, large networks can be protected."

A local St. Louis company, Global Velocity, is building commercial systems that use the FPX technology. The company is working with local companies, international corporations, universities, and the government to make plans to install systems in both local-area and wide-area networks. The device self-integrates easily into existing Gigabit Ethernet or Asynchronous Transfer Mode (ATM) networks.

The FPX itself fits within a rack-mounted chassis that can be installed in any network closet. When a virus or worm is detected, the system can either silently drop the malicious traffic or generate a pop-up message on an end-user’s computer. An administrator uses a simple, web-based interface to control and configure the system.

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/477.html
http://www.arl.wustl.edu/~lockwood/publications/MAPLD_2003_e10_lockwood_p.pdf

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>