Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough for the computer of tomorrow?

25.09.2003


For the first time a material now exists that is not only a semiconductor but also exhibits exploitable magnetic properties at room temperature. Researchers at the Royal Institute of Technology (KTH) in Stockholm, Sweden, have taken the lead in an international race to find the technology of tomorrow.



Today’s computers process information using semiconductor chips and store it on magnetic discs. Tomorrow’s technology may mean that these parts merge into a single chip. This is based on the so-called ‘spin’ of electrons. Electron spin generates magnetic fields. Magnetism in iron and other magnetic materials comes from this phenomenon. This spin has a specific direction, and this direction can be exploited as a carrier of information, as ones and zeroes, when you have the equipment to influence and read the spin direction. This technology is believed to be capable of replacing a great deal of today’s electronics, and it is therefore called ‘spintronics.’

Researchers from around the world, both in industry and at universities, have been seeking to create the ‘spin transistor’ for a few years now. It has been created in labs, but only at extremely low temperatures. As recently as last winter, the temperature -100 C was hailed as a milestone in this research (Scientific American, March 2003).


Now a team consisting of experimentalists from the Royal Institute of Technology (KTH) in Stockholm, with the aid of theoreticians from KTH and Uppsala University, have found a substance, zinc oxide with a manganese additive, that makes the spin transistor possible at room temperature, and therefore feasible for mass production.

“Our discovery is not a milestone, it’s a breakthrough,” says Professor Venkat Rao at KTH Materials Science.

What does this mean? Can controlling a spinning electron really change so much? Yes, whoever harnesses the infinitesimal controls the ballgame. It is impossible to predict precisely what practical consequences this will have in the form of new technology, but if the material withstands the test of production, there is tremendous potential for producing much smaller and faster computers, perhaps even so-called quantum computers.

The finding is a door-opener. There are myriad paths to follow. The article is being published and is one of the cover headlines in the October issue of Nature Materials.

Jacob Seth Fransson | alfa
Further information:
http://www.kth.se

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>