Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia researchers design unique microfluidic capillary fittings, manifolds and interconnects

24.09.2003


The CapTite™ collection of capillary fittings are based on Sandia’s exclusive one-piece ferrule (patent pending).


The ChipTite™ series of manifolds and interconnects is fully compatible with CapTite™ and is easily adaptable to multiple chip configurations.


Pursuing commercialization of technologies spawned by its highly successful µChemLab(tm) project, Sandia National Laboratories is actively soliciting industry partners to license, manufacture, and sell a unique suite of microfluidic connection products.

Two distinct portfolios are being offered for licensing: The CapTite(tm) collection of capillary fittings, which is based on an exclusive one-piece ferrule; and the Chip-Tite(tm) series of manifolds and interconnects, which is fully compatible with CapTite(tm).

Microfluidic and lab-on-a-chip products are expected to provide superior benefits in many important and growing markets. The CapTite(tm) fittings and manifolds have the potential to find broad application in the existing research community as well as in many emerging markets, including proteomics, genomics, HPLC, micro-mechanical and micro-hydraulic assemblies.



In a market research study published earlier this year, Frost & Sullivan suggested that the microfluidics industry is also likely to benefit from the technological progress in complementary areas such as semiconductors and health care. Lab-on-a-chip devices are expected to eventually provide multiplexing and lower overall price for research, routine, and diagnostic testing. The overall market for microfluidics/lab-on-a-chip products, says the Frost & Sullivan study, is forecast to experience a rate of growth of 33.1 percent by 2008, or $710 million.

The CapTite(tm) collection is designed around a unique one-piece ferrule that eliminates sealing sleeves while providing unprecedented pressure capabilities up to 40,000 psi. These low-cost connectors are designed to be the smallest size easily finger tightened, and provide reliable, clean, reusable seals in a wide variety of materials. The complementary Chip-Tite(tm) series of manifolds and interconnects provides an elegant capillary-to-microchip interface. Jill Micheau, a business development associate at Sandia, said companies with the technical capability and manufacturing capacity to produce these devices for government and commercial applications are encouraged to contact Sandia for information on licensing. "These micro-scale machined junctions offer a modular solution to microfluidic designs and consistent fluid connections with simple and accurate registration," she said. The CapTite(tm) offering, added Micheau, represents an opportunity to license a product line with the potential to become the standard for use in microfluidic devices that will permeate the pharmaceutical, biotechnology, life science, defense, public health and food and agriculture markets.

Mike Janes | Sandia National Laboratories
Further information:
http://www.sandia.gov/
http://www.ca.sandia.gov/industry_partner/MicroChem_partnerships.html or by emailing CA-Partnerships@sandia.gov
http://www.sandia.gov/news-center/news-releases/2003/mat-chem/mf-fittings.html

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>