Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New transistor makes brighter future for display screens

03.07.2003


Researchers from Myongji University, Korea, have developed a way to improve liquid crystal displays (LCD), which could revolutionise display technology. Published today in the Institute of Physics journal Semiconductor Science and Technology, Professor Yong-Sang Kim and his team propose a new structure for polycrystalline silicon thin film transistors (poly-Si TFT), which makes them more reliable when used in active matrix liquid crystal displays (AMLCD), like those on lap top screens and television screens.



An AMLCD has a transistor for each pixel on the screen, which can be switched on or off. Currently, most AMLCDs use amorphous-silicon (a-Si) transistors. Poly-Si TFTs, however, have several advantages over a-Si TFTs, as they are thinner, lighter and can make higher resolution displays. The down side is that when applying poly-Si TFTs to AMLCDs, they leak much more current than the a-Si TFTs. A high leakage current can cause the colour and brightness of the image to change, rather than stay constant.

Previous methods of minimising the leakage current have led to a reduction of the ‘on-state’ current (which is the current flowing through the circuit when the transistor is switched on). This leads to a flickering screen, and reduces the performance of other parts of the circuit. Professor Kim’s goal has been to lower the leakage current without sacrificing the on-state current. The results published today show that using his new gate insulator structure in the poly-Si TFTs, he reduced the leakage current by three orders of magnitude, with no loss to the on-state current.


Professor Kim said:
“Using our new transistor structure in active matrix liquid crystal displays be an improvement on what you see on television screens and laptops today. They would be more reliable, and could produce a better picture quality because the transistors – and therefore the pixels – can be miniaturised.”

The new transistors make the displays more reliable as their crystalline structure allows them handle more information than the conventional amorphous transistors. So more of the circuitry (that would conventionally the placed externally) can be put onto the glass of the screen, which improves the reliability by reducing external connections.

Michelle Cain | alfa
Further information:
http://iop.org/EJ/SST

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Fraunhofer HHI with latest VR technologies at NAB in Las Vegas

24.04.2017 | Trade Fair News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>