Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New transistor makes brighter future for display screens


Researchers from Myongji University, Korea, have developed a way to improve liquid crystal displays (LCD), which could revolutionise display technology. Published today in the Institute of Physics journal Semiconductor Science and Technology, Professor Yong-Sang Kim and his team propose a new structure for polycrystalline silicon thin film transistors (poly-Si TFT), which makes them more reliable when used in active matrix liquid crystal displays (AMLCD), like those on lap top screens and television screens.

An AMLCD has a transistor for each pixel on the screen, which can be switched on or off. Currently, most AMLCDs use amorphous-silicon (a-Si) transistors. Poly-Si TFTs, however, have several advantages over a-Si TFTs, as they are thinner, lighter and can make higher resolution displays. The down side is that when applying poly-Si TFTs to AMLCDs, they leak much more current than the a-Si TFTs. A high leakage current can cause the colour and brightness of the image to change, rather than stay constant.

Previous methods of minimising the leakage current have led to a reduction of the ‘on-state’ current (which is the current flowing through the circuit when the transistor is switched on). This leads to a flickering screen, and reduces the performance of other parts of the circuit. Professor Kim’s goal has been to lower the leakage current without sacrificing the on-state current. The results published today show that using his new gate insulator structure in the poly-Si TFTs, he reduced the leakage current by three orders of magnitude, with no loss to the on-state current.

Professor Kim said:
“Using our new transistor structure in active matrix liquid crystal displays be an improvement on what you see on television screens and laptops today. They would be more reliable, and could produce a better picture quality because the transistors – and therefore the pixels – can be miniaturised.”

The new transistors make the displays more reliable as their crystalline structure allows them handle more information than the conventional amorphous transistors. So more of the circuitry (that would conventionally the placed externally) can be put onto the glass of the screen, which improves the reliability by reducing external connections.

Michelle Cain | alfa
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>