Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New transistor makes brighter future for display screens

03.07.2003


Researchers from Myongji University, Korea, have developed a way to improve liquid crystal displays (LCD), which could revolutionise display technology. Published today in the Institute of Physics journal Semiconductor Science and Technology, Professor Yong-Sang Kim and his team propose a new structure for polycrystalline silicon thin film transistors (poly-Si TFT), which makes them more reliable when used in active matrix liquid crystal displays (AMLCD), like those on lap top screens and television screens.



An AMLCD has a transistor for each pixel on the screen, which can be switched on or off. Currently, most AMLCDs use amorphous-silicon (a-Si) transistors. Poly-Si TFTs, however, have several advantages over a-Si TFTs, as they are thinner, lighter and can make higher resolution displays. The down side is that when applying poly-Si TFTs to AMLCDs, they leak much more current than the a-Si TFTs. A high leakage current can cause the colour and brightness of the image to change, rather than stay constant.

Previous methods of minimising the leakage current have led to a reduction of the ‘on-state’ current (which is the current flowing through the circuit when the transistor is switched on). This leads to a flickering screen, and reduces the performance of other parts of the circuit. Professor Kim’s goal has been to lower the leakage current without sacrificing the on-state current. The results published today show that using his new gate insulator structure in the poly-Si TFTs, he reduced the leakage current by three orders of magnitude, with no loss to the on-state current.


Professor Kim said:
“Using our new transistor structure in active matrix liquid crystal displays be an improvement on what you see on television screens and laptops today. They would be more reliable, and could produce a better picture quality because the transistors – and therefore the pixels – can be miniaturised.”

The new transistors make the displays more reliable as their crystalline structure allows them handle more information than the conventional amorphous transistors. So more of the circuitry (that would conventionally the placed externally) can be put onto the glass of the screen, which improves the reliability by reducing external connections.

Michelle Cain | alfa
Further information:
http://iop.org/EJ/SST

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>