Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New transistor makes brighter future for display screens

03.07.2003


Researchers from Myongji University, Korea, have developed a way to improve liquid crystal displays (LCD), which could revolutionise display technology. Published today in the Institute of Physics journal Semiconductor Science and Technology, Professor Yong-Sang Kim and his team propose a new structure for polycrystalline silicon thin film transistors (poly-Si TFT), which makes them more reliable when used in active matrix liquid crystal displays (AMLCD), like those on lap top screens and television screens.



An AMLCD has a transistor for each pixel on the screen, which can be switched on or off. Currently, most AMLCDs use amorphous-silicon (a-Si) transistors. Poly-Si TFTs, however, have several advantages over a-Si TFTs, as they are thinner, lighter and can make higher resolution displays. The down side is that when applying poly-Si TFTs to AMLCDs, they leak much more current than the a-Si TFTs. A high leakage current can cause the colour and brightness of the image to change, rather than stay constant.

Previous methods of minimising the leakage current have led to a reduction of the ‘on-state’ current (which is the current flowing through the circuit when the transistor is switched on). This leads to a flickering screen, and reduces the performance of other parts of the circuit. Professor Kim’s goal has been to lower the leakage current without sacrificing the on-state current. The results published today show that using his new gate insulator structure in the poly-Si TFTs, he reduced the leakage current by three orders of magnitude, with no loss to the on-state current.


Professor Kim said:
“Using our new transistor structure in active matrix liquid crystal displays be an improvement on what you see on television screens and laptops today. They would be more reliable, and could produce a better picture quality because the transistors – and therefore the pixels – can be miniaturised.”

The new transistors make the displays more reliable as their crystalline structure allows them handle more information than the conventional amorphous transistors. So more of the circuitry (that would conventionally the placed externally) can be put onto the glass of the screen, which improves the reliability by reducing external connections.

Michelle Cain | alfa
Further information:
http://iop.org/EJ/SST

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>