Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Way to Make Realistic Shadows for Computer Images, Animation

18.06.2003


Caixia Zhang



Scientists and computer gamers alike could benefit from a new method for creating soft, realistic shadows in computer-generated images.

Engineers at Ohio State University have created computer algorithms that model how light passes through translucent three-dimensional objects or fluids such as water, clouds, fire, and smoke. The result: shadows that begin to approach the realism of Hollywood animation, but don’t require as much computer memory to create.

Caixia Zhang, now a doctoral student at Ohio State, began this project for her master’s thesis. She and Roger Crawfis, professor of computer and information science, described the work in the current issue of the journal IEEE Transactions on Visualization and Computer Graphics.



The new software algorithms are unique because they generate soft shadows for 3D objects, and take into account factors such as how light fades as it passes through a translucent object, Zhang said.

The engineers tested the algorithms by creating shadows for objects of varying complexity, including a cloud, a group of robots, and a bonsai tree.

Crawfis characterized Zhang’s work as a bridge between low-level animation software and the high-end products used by Hollywood to create animated movies.

"The ultimate goal is super-accurate, super-fast, low-memory image rendering," he said. "This work is a step in that direction."

"Hollywood now spends an hour per frame, for animation that uses 30 frames a second," he continued. But moviemakers could use the Ohio State algorithms to make more realistic mock-ups as they’re developing an animation.

Other possible applications include software that simulates surgical procedures or helps scientists visualize complex data.

"The challenge is to display the data in a way that someone can get the information they need," Zhang said.

To make the new algorithms, she used a common volume-rendering method called splatting. Some methods trace a viewer’s assumed line of sight to an object to create an image. Splatting, on the other hand, assumes that the object will be projected against a two-dimensional surface such as a TV or movie screen, so the calculations can be done as if for a 2D object.

The name "splatting" comes from software developers likening the method to throwing snowballs against a board, Zhang said. (The object’s 2D footprint is called a splat, and the object is broken up into volume elements, or "voxels" -- the 3D equivalent of pixels.)This sentence is re-written to :The 3D object is broken up into volume elements, or "voxels", and a voxel’s 2D footprint is called a "splat."

"The advantage of splatting is that you can keep track of relevant voxels, and it’s less expensive in terms of data storage," she said.

With the current advancements being made in graphics cards and related computer hardware, Crawfis feels that consumers would soon be able to enjoy computer games that use the new algorithms on their home PC.

The University of Erlangen-Nuremberg supplied the data for the bonsai tree used in this study, and funding came from a National Science Foundation CAREER award.



Contact: Caixia Zhang, (614) 688-3766; Zhang.252@osu.edu
Roger Crawfis, (614) 292-2566; Crawfis.3@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/shadow.htm
http://www.uni-erlangen.org/

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>