Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Way to Make Realistic Shadows for Computer Images, Animation

18.06.2003


Caixia Zhang



Scientists and computer gamers alike could benefit from a new method for creating soft, realistic shadows in computer-generated images.

Engineers at Ohio State University have created computer algorithms that model how light passes through translucent three-dimensional objects or fluids such as water, clouds, fire, and smoke. The result: shadows that begin to approach the realism of Hollywood animation, but don’t require as much computer memory to create.

Caixia Zhang, now a doctoral student at Ohio State, began this project for her master’s thesis. She and Roger Crawfis, professor of computer and information science, described the work in the current issue of the journal IEEE Transactions on Visualization and Computer Graphics.



The new software algorithms are unique because they generate soft shadows for 3D objects, and take into account factors such as how light fades as it passes through a translucent object, Zhang said.

The engineers tested the algorithms by creating shadows for objects of varying complexity, including a cloud, a group of robots, and a bonsai tree.

Crawfis characterized Zhang’s work as a bridge between low-level animation software and the high-end products used by Hollywood to create animated movies.

"The ultimate goal is super-accurate, super-fast, low-memory image rendering," he said. "This work is a step in that direction."

"Hollywood now spends an hour per frame, for animation that uses 30 frames a second," he continued. But moviemakers could use the Ohio State algorithms to make more realistic mock-ups as they’re developing an animation.

Other possible applications include software that simulates surgical procedures or helps scientists visualize complex data.

"The challenge is to display the data in a way that someone can get the information they need," Zhang said.

To make the new algorithms, she used a common volume-rendering method called splatting. Some methods trace a viewer’s assumed line of sight to an object to create an image. Splatting, on the other hand, assumes that the object will be projected against a two-dimensional surface such as a TV or movie screen, so the calculations can be done as if for a 2D object.

The name "splatting" comes from software developers likening the method to throwing snowballs against a board, Zhang said. (The object’s 2D footprint is called a splat, and the object is broken up into volume elements, or "voxels" -- the 3D equivalent of pixels.)This sentence is re-written to :The 3D object is broken up into volume elements, or "voxels", and a voxel’s 2D footprint is called a "splat."

"The advantage of splatting is that you can keep track of relevant voxels, and it’s less expensive in terms of data storage," she said.

With the current advancements being made in graphics cards and related computer hardware, Crawfis feels that consumers would soon be able to enjoy computer games that use the new algorithms on their home PC.

The University of Erlangen-Nuremberg supplied the data for the bonsai tree used in this study, and funding came from a National Science Foundation CAREER award.



Contact: Caixia Zhang, (614) 688-3766; Zhang.252@osu.edu
Roger Crawfis, (614) 292-2566; Crawfis.3@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/shadow.htm
http://www.uni-erlangen.org/

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>