Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Way to Make Realistic Shadows for Computer Images, Animation

18.06.2003


Caixia Zhang



Scientists and computer gamers alike could benefit from a new method for creating soft, realistic shadows in computer-generated images.

Engineers at Ohio State University have created computer algorithms that model how light passes through translucent three-dimensional objects or fluids such as water, clouds, fire, and smoke. The result: shadows that begin to approach the realism of Hollywood animation, but don’t require as much computer memory to create.

Caixia Zhang, now a doctoral student at Ohio State, began this project for her master’s thesis. She and Roger Crawfis, professor of computer and information science, described the work in the current issue of the journal IEEE Transactions on Visualization and Computer Graphics.



The new software algorithms are unique because they generate soft shadows for 3D objects, and take into account factors such as how light fades as it passes through a translucent object, Zhang said.

The engineers tested the algorithms by creating shadows for objects of varying complexity, including a cloud, a group of robots, and a bonsai tree.

Crawfis characterized Zhang’s work as a bridge between low-level animation software and the high-end products used by Hollywood to create animated movies.

"The ultimate goal is super-accurate, super-fast, low-memory image rendering," he said. "This work is a step in that direction."

"Hollywood now spends an hour per frame, for animation that uses 30 frames a second," he continued. But moviemakers could use the Ohio State algorithms to make more realistic mock-ups as they’re developing an animation.

Other possible applications include software that simulates surgical procedures or helps scientists visualize complex data.

"The challenge is to display the data in a way that someone can get the information they need," Zhang said.

To make the new algorithms, she used a common volume-rendering method called splatting. Some methods trace a viewer’s assumed line of sight to an object to create an image. Splatting, on the other hand, assumes that the object will be projected against a two-dimensional surface such as a TV or movie screen, so the calculations can be done as if for a 2D object.

The name "splatting" comes from software developers likening the method to throwing snowballs against a board, Zhang said. (The object’s 2D footprint is called a splat, and the object is broken up into volume elements, or "voxels" -- the 3D equivalent of pixels.)This sentence is re-written to :The 3D object is broken up into volume elements, or "voxels", and a voxel’s 2D footprint is called a "splat."

"The advantage of splatting is that you can keep track of relevant voxels, and it’s less expensive in terms of data storage," she said.

With the current advancements being made in graphics cards and related computer hardware, Crawfis feels that consumers would soon be able to enjoy computer games that use the new algorithms on their home PC.

The University of Erlangen-Nuremberg supplied the data for the bonsai tree used in this study, and funding came from a National Science Foundation CAREER award.



Contact: Caixia Zhang, (614) 688-3766; Zhang.252@osu.edu
Roger Crawfis, (614) 292-2566; Crawfis.3@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/shadow.htm
http://www.uni-erlangen.org/

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>