Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT, London team reports first transatlantic touch

29.10.2002


Potential applications abound



In a milestone that conjures up the refrain to a Paul McCartney song, researchers at MIT and University College London have linked "hands across the water" in the first transatlantic touch, literally "feeling" each other’s manipulations of a small box on a computer screen.

Potential applications abound. "In addition to sound and vision, virtual reality programs could include touch as well," said Mandayam A. Srinivasan, director of MIT’s Touch Lab and leader of the MIT team.


Imagine haptic (touch) feedback for a surgeon practicing telemedicine. What about artists from around the world collaborating on a virtual sculpture? They could create different forms, colors, sounds and textures accessible over the Internet. Students in a physics class might "feel" the forces within the nucleus of an atom. "That application could also be sent across a very widespread network," Srinivasan said.

"We really don’t know all of the potential applications," he concluded. "Just like Bell didn’t anticipate all of the applications for the telephone."

The feat was first accomplished on May 23 of this year. The researchers plan to demonstrate it anew at an Internet2 conference Oct. 28-29 at the University of Southern California. That two-part demo will transmit touch signals between California and MIT, and between California and University College London (UCL).

"As far as we know, this is the first time that touch signals have been transmitted over long distances, particularly across the Atlantic," said Srinivasan, who holds appointments in MIT’s Research Laboratory of Electronics and Department of Mechanical Engineering. In 1998, his group transmitted touch signals between two rooms at MIT, allowing two users to perform a cooperative manipulation task in a shared virtual environment.

"Touch is the most difficult aspect of virtual environments to simulate, but we have shown in our previous work with MIT that the effort is worth-while. Now we are extending the benefits of touch feedback to long distance interaction," said Mel Slater, Professor of Virtual Environments in UCL’s Computer Science Department and Srinivasan’s UCL counterpart.

Srinivasan and Slater’s colleagues on the work are former MIT graduate student Boon K. Tay; current MIT graduate student Jung Kim of mechanical engineering; and J. Jordan, J. Mortensen and M. Oliveira at UCL.

All are authors of a paper describing an experiment on the work that involved 20 volunteers. That experiment showed that people completing a collaborative long-distance computer task that included the sense of touch felt a significantly greater sense of having a partner than those without access to the touch interface. The paper was presented Oct. 9 in Porto, Portugal at PRESENCE 2002: The 5th Annual International Workshop on Presence.

HOW IT WORKS

The demonstration of long-distance touch involves a computer and a small robotic arm that takes the place of a mouse. A user can manipulate the arm by clasping its end, which resembles a thick stylus. The overall system creates the sensation of touch by exerting a precisely controlled force on the user’s fingers. The arm, known as the PHANToM, was invented by others at MIT in the early 1990s and is available commercially through SensAble Technologies. The current researchers modified the PHANToM software for the transatlantic application.

On the computer screen, each user sees a three-dimensional room. Within that room are a black box and two tiny square pointers that show the users where they are in the room. They then use the robotic arms to collaboratively lift the box.

That’s where the touch comes in. As a user at MIT moves the arm--and therefore the pointer--to touch the box, he can "feel" the box, which has the texture of hard rubber. The user in London does the same thing. Together they attempt to pick up the box--one applying force from the left, the other from the right--and hold it as long as possible. All the while, each user can feel the other’s manipulations of the box.

An MIT News Office writer participated in a recent demonstration. The force from the participant in London felt so real that the writer jumped backward.

WHAT’S NEXT?

Jung Kim, the MIT researcher who participated in the May demonstration, describes the experience as "amazing. The first touch from the other side of the world!"

There are still technical problems that must be solved, however, before everyday applications will become available. Chief among them is the long time delay, due to Internet traffic, between when one user "touches" the on-screen box and when the second user feels the resulting force. "Each user must do the task very slowly or the synchronization is lost," Srinivasan said. In that circumstance, the box vibrates both visually and to the touch, making the task much more difficult.

Srinivasan is confident, however, that the time delay can be reduced. "Even in our normal touch, there’s a time delay between when you touch something and when those signals arrive in your brain," he said. "So in a sense, the brain is teleoperating through the hand."

A one-way trip from hand to brain takes about 30 milliseconds; that same trip from MIT to London takes 150-200 milliseconds, depending on network traffic. "If the Internet time delays are reduced to values less than the time delay between the brain and hand, I would expect that the Internet task would feel very natural," Srinivasan said.

Although improving network speeds is the researchers’ main hurdle, they also hope to improve the robotic arm and its capabilities, as well as the algorithms that allow the user to "feel" via computer.

The MIT researchers supplied the haptics expertise for the work; the UCL team covered software development and network issues. The two groups began their collaboration in 1998 when Slater was at MIT on sabbatical.

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>