Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allocation technique boosts efficiency, minimizes interference for wireless internet broadband

01.10.2002


Penn State engineers have developed an economical way to more efficiently manage radio spectrum use and prevent interference on wireless broadband systems for high-speed Internet access – potentially bringing down costs for consumers. Dr. Mohsen Kavehrad, director of Penn State’s Center for Information and Communications Technology Research (CICTR), says, "With this technique, service providers could offer quality service to more homes using only a limited span of the radio spectrum. And, if providers can squeeze more customers onto the available bandwidth, it could translate into lower costs for the consumer." In addition, the approach promises equipment cost savings since simulations show that the new scheme maintains performance at top industry standards with more economical components.



The new approach is detailed in a paper, "Co-Channel Interference Reduction in Dynamic-TDD Fixed Wireless Applications Using Time Slot Allocation Algorithms," published in the October issue of the IEEE Transactions on Communications. The authors are Wuncheol Jeong, doctoral candidate in electrical engineering, and Kavehrad.

Kavehrad explains that, currently, high speed Internet access capable of carrying MP3 files, video, or teleconferencing is available primarily over wired networks. However, wireless local loops are being introduced as broadband alternatives in some test markets. These new wireless networks are facing serious obstacles in competing for bandwidth; sometimes, having to share bands with cordless phones or even microwave ovens. Even when the wireless providers use licensed bands, they face the prospect of many customers simultaneously uplinking and downlinking information across the net, creating co-channel interference.


The wireless local loops work much like cell phones via a base station that sends the radio signals carrying the Internet connection out to any customer whose residence or business is equipped with an appropriate antenna. Unlike cell phone usage, however, the two-directional uplink and downlink traffic between the customer and the Internet provider’s base station is more asymmetrical with very little use during sleeping hours and lots of use when kids come home from school and download music or play games, for example. Kavehrad says, "The nature of multimedia traffic is not static in uplink and downlink directions, as with voice telephony, and the bandwidth is more biased toward downlink transmissions."

Wireless local loops need both software and hardware that enables the network to respond to the changes in traffic while also making sure that every hertz in the available spectrum is used as efficiently as possible. In addition, the system must contend with the fact that some incoming interfering signals are stronger than others.

The solution developed by the Penn State engineers is software that allows the subscriber signal whose direction of arrival is subject to a lesser number of strong interferers to be processed ahead of the ones experiencing the most interference. In other words, the new strategy is a scheme that allows avoiding strong co-channel interference by sequencing the processing of the signals according to the amount of interference they are experiencing. Since the amount of interference any subscriber’s signal experiences varies microsecond by microsecond, no subscriber has to wait very long for a turn.

Kavehrad adds, "The usual techniques employed to suppress interference use adaptive spatial filters which require expensive RF components and a large number of computations to queue the subscribers’ signals. However, with our approach, we need only a simple, cost effective spatial filter and relatively fewer computations. Our simulations show that the performance of the new approach and the traditional technique are comparable. Thus, our strategy shows a practical compromise between complexity and cost, while achieving the desired signal quality."

*** The research was supported by Penn State’s CICTR and a grant from the National Science Foundation. ***

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>