Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allocation technique boosts efficiency, minimizes interference for wireless internet broadband

01.10.2002


Penn State engineers have developed an economical way to more efficiently manage radio spectrum use and prevent interference on wireless broadband systems for high-speed Internet access – potentially bringing down costs for consumers. Dr. Mohsen Kavehrad, director of Penn State’s Center for Information and Communications Technology Research (CICTR), says, "With this technique, service providers could offer quality service to more homes using only a limited span of the radio spectrum. And, if providers can squeeze more customers onto the available bandwidth, it could translate into lower costs for the consumer." In addition, the approach promises equipment cost savings since simulations show that the new scheme maintains performance at top industry standards with more economical components.



The new approach is detailed in a paper, "Co-Channel Interference Reduction in Dynamic-TDD Fixed Wireless Applications Using Time Slot Allocation Algorithms," published in the October issue of the IEEE Transactions on Communications. The authors are Wuncheol Jeong, doctoral candidate in electrical engineering, and Kavehrad.

Kavehrad explains that, currently, high speed Internet access capable of carrying MP3 files, video, or teleconferencing is available primarily over wired networks. However, wireless local loops are being introduced as broadband alternatives in some test markets. These new wireless networks are facing serious obstacles in competing for bandwidth; sometimes, having to share bands with cordless phones or even microwave ovens. Even when the wireless providers use licensed bands, they face the prospect of many customers simultaneously uplinking and downlinking information across the net, creating co-channel interference.


The wireless local loops work much like cell phones via a base station that sends the radio signals carrying the Internet connection out to any customer whose residence or business is equipped with an appropriate antenna. Unlike cell phone usage, however, the two-directional uplink and downlink traffic between the customer and the Internet provider’s base station is more asymmetrical with very little use during sleeping hours and lots of use when kids come home from school and download music or play games, for example. Kavehrad says, "The nature of multimedia traffic is not static in uplink and downlink directions, as with voice telephony, and the bandwidth is more biased toward downlink transmissions."

Wireless local loops need both software and hardware that enables the network to respond to the changes in traffic while also making sure that every hertz in the available spectrum is used as efficiently as possible. In addition, the system must contend with the fact that some incoming interfering signals are stronger than others.

The solution developed by the Penn State engineers is software that allows the subscriber signal whose direction of arrival is subject to a lesser number of strong interferers to be processed ahead of the ones experiencing the most interference. In other words, the new strategy is a scheme that allows avoiding strong co-channel interference by sequencing the processing of the signals according to the amount of interference they are experiencing. Since the amount of interference any subscriber’s signal experiences varies microsecond by microsecond, no subscriber has to wait very long for a turn.

Kavehrad adds, "The usual techniques employed to suppress interference use adaptive spatial filters which require expensive RF components and a large number of computations to queue the subscribers’ signals. However, with our approach, we need only a simple, cost effective spatial filter and relatively fewer computations. Our simulations show that the performance of the new approach and the traditional technique are comparable. Thus, our strategy shows a practical compromise between complexity and cost, while achieving the desired signal quality."

*** The research was supported by Penn State’s CICTR and a grant from the National Science Foundation. ***

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>