Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Allocation technique boosts efficiency, minimizes interference for wireless internet broadband

01.10.2002


Penn State engineers have developed an economical way to more efficiently manage radio spectrum use and prevent interference on wireless broadband systems for high-speed Internet access – potentially bringing down costs for consumers. Dr. Mohsen Kavehrad, director of Penn State’s Center for Information and Communications Technology Research (CICTR), says, "With this technique, service providers could offer quality service to more homes using only a limited span of the radio spectrum. And, if providers can squeeze more customers onto the available bandwidth, it could translate into lower costs for the consumer." In addition, the approach promises equipment cost savings since simulations show that the new scheme maintains performance at top industry standards with more economical components.



The new approach is detailed in a paper, "Co-Channel Interference Reduction in Dynamic-TDD Fixed Wireless Applications Using Time Slot Allocation Algorithms," published in the October issue of the IEEE Transactions on Communications. The authors are Wuncheol Jeong, doctoral candidate in electrical engineering, and Kavehrad.

Kavehrad explains that, currently, high speed Internet access capable of carrying MP3 files, video, or teleconferencing is available primarily over wired networks. However, wireless local loops are being introduced as broadband alternatives in some test markets. These new wireless networks are facing serious obstacles in competing for bandwidth; sometimes, having to share bands with cordless phones or even microwave ovens. Even when the wireless providers use licensed bands, they face the prospect of many customers simultaneously uplinking and downlinking information across the net, creating co-channel interference.


The wireless local loops work much like cell phones via a base station that sends the radio signals carrying the Internet connection out to any customer whose residence or business is equipped with an appropriate antenna. Unlike cell phone usage, however, the two-directional uplink and downlink traffic between the customer and the Internet provider’s base station is more asymmetrical with very little use during sleeping hours and lots of use when kids come home from school and download music or play games, for example. Kavehrad says, "The nature of multimedia traffic is not static in uplink and downlink directions, as with voice telephony, and the bandwidth is more biased toward downlink transmissions."

Wireless local loops need both software and hardware that enables the network to respond to the changes in traffic while also making sure that every hertz in the available spectrum is used as efficiently as possible. In addition, the system must contend with the fact that some incoming interfering signals are stronger than others.

The solution developed by the Penn State engineers is software that allows the subscriber signal whose direction of arrival is subject to a lesser number of strong interferers to be processed ahead of the ones experiencing the most interference. In other words, the new strategy is a scheme that allows avoiding strong co-channel interference by sequencing the processing of the signals according to the amount of interference they are experiencing. Since the amount of interference any subscriber’s signal experiences varies microsecond by microsecond, no subscriber has to wait very long for a turn.

Kavehrad adds, "The usual techniques employed to suppress interference use adaptive spatial filters which require expensive RF components and a large number of computations to queue the subscribers’ signals. However, with our approach, we need only a simple, cost effective spatial filter and relatively fewer computations. Our simulations show that the performance of the new approach and the traditional technique are comparable. Thus, our strategy shows a practical compromise between complexity and cost, while achieving the desired signal quality."

*** The research was supported by Penn State’s CICTR and a grant from the National Science Foundation. ***

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>