Scientist develops method for sound navigation

Drawing on the expertise of the blind, a University of Toronto professor is “teaching” electronic devices how to navigate using surrounding sounds.

“The goal was to build a system that mimics the acoustic navigation abilities of blind people,” says Professor Parham Aarabi of the Edward S. Rogers Sr. Department of Electrical and Computer Engineering. He has developed a method by which a device fitted with as few as two microphones can combine the information from sounds around it to locate and orient itself, in the same way that an animal uses its two ears. This method achieves the same result as radar but is more adaptable to different technologies, he adds.

Eventually, the technology could be used in robotics or personal communication devices, such as cell phones or hand-held computers. For example, says Aarabi, cell phones that combine the signals from many microphones could filter out background noise and transmit only the clear voice of the cell phone user.

Aarabi says that communications devices using this technology could become available to consumers within five to 10 years. The study, funded by the Canada Research Chairs Program and the Canada Foundation for Innovation, will appear in an upcoming issue of IEEE Transactions on Systems, Man and Cybernetics, Part B. CONTACT: Professor Parham Aarabi, Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 416-976-7893, parham@ecf.utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca.

Media Contact

Nicolle Wahl University of Toronto

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors