Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Case Study in Chip Scale Review Features Two-Chip Stacked Package

Smaller and faster are two goals in today’s electronics market and an article in an international trade publication shows how North Dakota State University researchers, Fargo, design and build such electronics packages.

A case study by researchers in the Center for Nanoscale Science and Engineering (CNSE) at North Dakota State University was published in the July 2008 issue of the Chip Scale Review magazine.

“Case Study: Building a Two-Chip Stacked Package” is authored by Fred Haring, research technician; Chris Hoffarth, engineering technician; Syed Sajid Ahmad, manager of engineering services; John Jacobson, senior design engineer; and Aaron Reinholz, associate director of electronics technology. CNSE staff members Linda Leick, Darci Hansen, Matt Sharpe and Meridith Bell also contributed significantly to the project.

With the increasing demand for more functionality and smaller size with portable devices such as cell phones, mp3 players, and GPS units, the performance and size of individual electronic components have become critical. The case study details how CNSE researchers design and manufacture a chip scale package. Engineering a single package housing multiple chips stacked vertically one on top of the other results in smaller and more efficient packages for devices. For example, CNSE researchers have successfully reduced the size of two electronics components by 75 percent.

Two or more processors packaged in a single package will result in an overall package size smaller than each individual package, yet will have the combined computing power of the two individual integrated processors. The case study walks through this two-chip stacked package process at CNSE, discussing stacked-die design considerations, substrate limitations, stack configuration, assembly process, process documentation, wire bonding, laser marking, ball attaching, singulation, inspection, testing, and hallmark successes of system completion.

The case study is found at

About the NDSU authors
Fred Haring received his bachelor’s degree in archeology from Moorhead State University, Moorhead, Minn. Prior to joining the Center for Nanoscale Science and Engineering (CNSE) at NDSU in 2002, Haring worked in the NDSU Industrial Engineering department as a facilities set-up and machinery technician. He is a fabrication technician for the surface mount technology and chip scale packaging lines.

Chris Hoffarth received his associate’s degree in electronics technology from North Dakota State College of Science, Wahpeton, N.D. Hoffarth was a surface mount technician at Vancsco Electronics in Valley City, N.D., before joining CNSE at NDSU in 2005. He manages the surface mount technology and chip scale package lines.

Syed Sajid Ahmad received his master’s degree in experimental physics from the University of the Punjab and his master’s degree in theoretical physics from Islamabad University, Pakistan. Ahmad was employed by Micron Technology conducting development and implementation of advanced packaging prior to joining CNSE at NDSU in 2003. At CNSE, he manages the research and manufacturing capabilities in the areas of thin film, thick film, chip scale packaging and surface mount technology.

John Jacobson received his bachelor’s degree in electronics technology from Arizona State University, Tempe. Prior to joining CNSE at NDSU in 2004, Jacobson served as a materials engineer at Micron Technology, Boise, Idaho. He leads design and electrical modeling of chip scale packaging efforts.

Aaron Reinholz received his bachelor’s degree in electrical engineering from NDSU. Prior to joining CNSE at NDSU in 2004, Reinholz served as an engineer at Rockwell Collins, Inc., Cedar Rapids, Iowa, for 13 years. He directs the CNSE engineering organization overseeing engineering services, coordinating industry partners, executing multiple projects and managing laboratory space.

About Chip Scale Review
Chip Scale Review is produced for a worldwide audience of engineers, specialists, researchers and end-users of chip-scale electronics, with a circulation of 24,000 worldwide.

Carol Renner | Newswise Science News
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>