Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Suggests Human Visual System Could Make Powerful Computer

25.07.2008
New research suggests that if we want to carry out artificial computations, all we have to do is literally look around. Rensselaer professor Mark Changizi has begun to develop a technique to turn our eyes and visual system into a programmable computer. His findings are reported in the latest issue of the journal Perception.

Since the idea of using DNA to create faster, smaller, and more powerful computers originated in 1994, scientists have been scrambling to develop successful ways to use genetic code for computation. Now, new research from a professor at Rensselaer Polytechnic Institute suggests that if we want to carry out artificial computations, all we have to do is literally look around.

Assistant Professor of Cognitive Science Mark Changizi has begun to develop a technique to turn our eyes and visual system into a programmable computer. His findings are reported in the latest issue of the journal Perception.

Harnessing the computing power of our visual system, according to Changizi, requires visually representing a computer program in such a way that when an individual views the representation, the visual system naturally carries out the computation and generates a perception.

Ideally, we would be able to glance at a complex visual stimulus (the software program), and our visual system (the hardware) would automatically and effortlessly generate a perception, which would inform us of the output of the computation, Changizi said.

Changizi has begun successfully applying his approach by developing visual representations of digital circuits. A large and important class of computations used in calculators, computers, phones, and most of today’s electronic products, digital circuits are constructed from assemblies of logic gates, and always have an output value of zero or one.

“A digital circuit needs wire in order to transmit signals to different parts of the circuit. The ‘wire’ in a visual representation of a digital circuit is part of the drawing itself, which can be perceived only in two ways,” said Changizi, who created visual stimuli to elicit perceptions of an object tilted toward (an output of one) or away (an output of zero) from the viewer. “An input to a digital circuit is a zero or one. Similarly, an input to a visual version of the circuit is an unambiguous cue to the tilt at that part of the circuit.”

Changizi used simple drawings of unambiguous boxes as inputs for his visually represented digital circuits. The positioning and shading of each box indicates which direction the image is tilted.

He also created visual representations of the logic gates NOT, which flips a circuit’s state from 0 to 1 or vice versa; OR, which outputs 1 if one or both inputs are 1; and AND, which outputs 1 only if both inputs are 1.

“Visually represented NOT gates flip a box’s perceived tilt as you work through a circuit, and OR gates are designed with transparency cues so that the elicited perception is always that the box is tilted toward you, unless overridden,” Changizi said. “The AND gate is similarly designed with transparency cues, but contrary to the OR gate, it will always favor the perception that it is tilted away from you.”

By perceptually walking through Changizi’s visual representation of a digital circuit, from the inputs downward to the output, our visual system will naturally carry out the computation so that the “output” of the circuit is the way we perceive the final box to tilt, and thus a one or zero.

“Not only may our visual system one day give DNA computation a run for its money, but visual circuits have many potential advantages for teaching logic,” Changizi said. “People are notoriously poor logical reasoners — someday visual circuits may enable logic-poor individuals to ‘see their way’ through complex logical formulae.”

Although Changizi’s visual stimuli are successful at eliciting viewer perception, he says there are still serious difficulties to overcome. The visual logic gates do not always transmit the appropriate perception at the output, and it can be difficult to perceive one’s way through these visual circuits, although Changizi argues we may have to train our visual system to work through them, similar to the way we need to be taught to read.

Additionally, building larger circuits will require smaller or more specialized visual circuit components.

“My hope is that other perception and illusion experts will think of novel visual components which serve to mimic some digital circuit component, thereby enriching the powers of visual circuits,” Changizi said.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Amber Cleveland | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>