Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study Suggests Human Visual System Could Make Powerful Computer

New research suggests that if we want to carry out artificial computations, all we have to do is literally look around. Rensselaer professor Mark Changizi has begun to develop a technique to turn our eyes and visual system into a programmable computer. His findings are reported in the latest issue of the journal Perception.

Since the idea of using DNA to create faster, smaller, and more powerful computers originated in 1994, scientists have been scrambling to develop successful ways to use genetic code for computation. Now, new research from a professor at Rensselaer Polytechnic Institute suggests that if we want to carry out artificial computations, all we have to do is literally look around.

Assistant Professor of Cognitive Science Mark Changizi has begun to develop a technique to turn our eyes and visual system into a programmable computer. His findings are reported in the latest issue of the journal Perception.

Harnessing the computing power of our visual system, according to Changizi, requires visually representing a computer program in such a way that when an individual views the representation, the visual system naturally carries out the computation and generates a perception.

Ideally, we would be able to glance at a complex visual stimulus (the software program), and our visual system (the hardware) would automatically and effortlessly generate a perception, which would inform us of the output of the computation, Changizi said.

Changizi has begun successfully applying his approach by developing visual representations of digital circuits. A large and important class of computations used in calculators, computers, phones, and most of today’s electronic products, digital circuits are constructed from assemblies of logic gates, and always have an output value of zero or one.

“A digital circuit needs wire in order to transmit signals to different parts of the circuit. The ‘wire’ in a visual representation of a digital circuit is part of the drawing itself, which can be perceived only in two ways,” said Changizi, who created visual stimuli to elicit perceptions of an object tilted toward (an output of one) or away (an output of zero) from the viewer. “An input to a digital circuit is a zero or one. Similarly, an input to a visual version of the circuit is an unambiguous cue to the tilt at that part of the circuit.”

Changizi used simple drawings of unambiguous boxes as inputs for his visually represented digital circuits. The positioning and shading of each box indicates which direction the image is tilted.

He also created visual representations of the logic gates NOT, which flips a circuit’s state from 0 to 1 or vice versa; OR, which outputs 1 if one or both inputs are 1; and AND, which outputs 1 only if both inputs are 1.

“Visually represented NOT gates flip a box’s perceived tilt as you work through a circuit, and OR gates are designed with transparency cues so that the elicited perception is always that the box is tilted toward you, unless overridden,” Changizi said. “The AND gate is similarly designed with transparency cues, but contrary to the OR gate, it will always favor the perception that it is tilted away from you.”

By perceptually walking through Changizi’s visual representation of a digital circuit, from the inputs downward to the output, our visual system will naturally carry out the computation so that the “output” of the circuit is the way we perceive the final box to tilt, and thus a one or zero.

“Not only may our visual system one day give DNA computation a run for its money, but visual circuits have many potential advantages for teaching logic,” Changizi said. “People are notoriously poor logical reasoners — someday visual circuits may enable logic-poor individuals to ‘see their way’ through complex logical formulae.”

Although Changizi’s visual stimuli are successful at eliciting viewer perception, he says there are still serious difficulties to overcome. The visual logic gates do not always transmit the appropriate perception at the output, and it can be difficult to perceive one’s way through these visual circuits, although Changizi argues we may have to train our visual system to work through them, similar to the way we need to be taught to read.

Additionally, building larger circuits will require smaller or more specialized visual circuit components.

“My hope is that other perception and illusion experts will think of novel visual components which serve to mimic some digital circuit component, thereby enriching the powers of visual circuits,” Changizi said.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The university offers bachelor’s, master’s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Amber Cleveland | Newswise Science News
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>