Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique to optimize computer speed

19.06.2008
Who doesn’t dream of increasingly fast computers that consume less and less energy? To design these computers of the future, it is important to be able to control nanoscale strain in the processors.

Until now, this strain remained difficult to observe. Now, thanks to a new electron holography technique (1) invented by researchers at the Centre d’élaboration de matériaux et d’études structurales (CEMES-CNRS), it is possible to map deformation in a crystal lattice with a precision and resolution never previously attained.

This new patented measurement device overcomes nearly all the limitations of current methods. It should enable manufacturers to improve microprocessor production methods and to optimize future computers. This work is published in the June 19, 2008 issue of the journal Nature.

“Strained” silicon is a fundamental component of all recent microprocessors. The reason for its success is that local strain-induced deformation in the crystal lattice improves processor performance. The deformation significantly increases electron mobility, making it possible to boost computer speed and reduce energy consumption. However, since manufacturers could not analyze deformation accurately, they didn’t have complete mastery of chip design. They essentially relied on simulations and monitoring of performance without ever truly knowing the strain state. This problem has now been resolved, thanks to a new strain measurement method developed by a CNRS team in Toulouse.

Based on electron holography, the technique certainly has appeal: it makes it possible to measure deformation (compression, tension, and shear strain) in numerous materials with high precision and spatial resolution. Precision exceeds 0.1%, or 0.5 picometers (2) and spatial resolution is on the nanometer scale. But the real innovation compared to traditional techniques is that it is makes it possible to analyze larger areas (a micrometer rather than the previous 100 nanometers) with a level of precision never reached before.

This measurement technique offers further advantages. It makes it possible to study samples that are ten times thicker than previous samples (300 nm), which guarantees that observations are accurate. The thicker the sample, the less the strain is relaxed, and the closer the measured stain is to that of a real system. In addition, the measurements are taken directly, unlike other techniques that require a certain number of preliminary simulations.

This technique, patented by CNRS in September 2007, will in all likelihood become the leading method for measuring crystal lattice strain at the nanometer scale. It will optimize strain modeling in transistors and enhance their electrical efficiency.

(1) Electron holography is a technique for measuring magnetic and electric fields. The new configuration designed by the CEMES (CNRS) researchers can measure deformations in crystal lattices.

(2) A picometer equals 10-12 m.

Julien Guillaume | alfa
Further information:
http://www.cnrs-dir.fr

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>