Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tartalo the robot is knocking on your door

19.06.2008
A research team from the University of the Basque Country, led by Basilio Sierra, is devising a robot that can get around by itself. Tartalo is able to identify different places and ask permission before going through a doorway.

We are accustomed to seeing robots programmed to carry out a concrete task such as the robotic arms well known in industry. What is surprising is to see a robot walking without help and making decisions for itself. This is precisely what the Autonomous Robotics and Systems Research Team at the University of the Basque Country (UPV/EHU) are involved in: increasing the autonomy of robots so that they are evermore capable of carrying out more tasks on their own. Some years ago they developed Marisorgin, the robot for distributing mail and now they have put Tartalo into operation.

Those working on the third floor of the Computer Science Faculty in the Basque city of Donostia-San Sebastián find it normal and everyday to meet Tartalo in the corridors- meet, not bump into! This 1.5-metre tall, intelligent machine side-steps any obstacle in its path, thanks to sensors that have been installed around its “body”: sonars that emit and detect ultrasounds, infrared sensors and laser rays. The laser, for example, measures the distance of the robot from any object within a radius of 180 degrees. Mr Basilio Sierra’s team, although it did not build the robot, having acquired it, but it is developing and enhancing its abilities.

With these sensors and the computer that is the robot’s ‘brain’, Tartalo will have the wherewithal to move from one place to another without problems; in fact, to wander. What the research team at the Department of Computational Sciences and Artificial Intelligence want to achieve, however, is a robot capable of going anywhere it is told to.

Finding one’s way inside buildings

The machines best known for guiding one from a starting point to a given goal are GPS navigation systems. However, these do not function inside buildings and neither would it be realistic to create a database with the plans for every building in the world. For this reason the UPV/EHU researchers use biomimetic systems as a basis for developing the robot, meaning that Tartalo does the same as a person or animal on entering a new place: explore the terrain and take in points of reference. But, for a machine to carry out what living creatures do by, as it were, instinct, the computer programmers have to nevertheless put in a huge quantity of data, programmes and calculations.

Buildings are semi-structured environments wherein determined common spaces are always found. Tartalo has been “taught” (programmed) to recognise four of these: room, corridor, front hall and “junction”. Thus, if we were to take the robot to our home, the first thing it would have to do is to carry out a process of auto-location, going around the apartment in order to memorise the location of these four places. By this process the machine creates a species of topological map and the homeowner only has to teach it what each space is called. For this to be possible, UPV/EHU researchers are designing systems of interaction between machine and persons. For example, in order for the robot to understand instructions, they are perfecting a voice recognition system and touch screen.

Single eye, sharp vision

In order to identify what is in front, to distinguish between a room and a corridor, for example, Tartalo uses this single eye - which gives it its name – as a camera. It measures the images received through the eye-camera, compares them with its database and then evaluates probabilities to decide what the image that it has ahead looks like. The robot knows, for example, that if the space is long and narrow, it is a corridor.

The most important skill that Tartalo has been taught is to recognise doors. In fact, in order to access most of the places instructed to do so, the robot will have to pass through a doorway first. This is why the camera is located at the level of the doorknob or handle, which is what enables the identification of the door. When this happens, the system is programmed so that, when moving down a corridor, it seeks and negotiates doorways. If the door is closed, as it is not yet fitted with an arm to open it, it knocks two or three times on the door with its “feet”.

The aim of the UPV/EHU research team is to develop the navigation system of the robot and the recognition of doors is fundamental to this end. From now on, Tartalo will have to learn to distinguish between many other things, such as faces, voices or any object that it is asked to fetch. But each one of these actions requires a specific programme and this, for the time being, is outside the remit of the research being undertaken by the UPV/EHU Autonomous Robotics and Systems Research Team. Nevertheless, little by little the skills developed by other teams will be incorporated into this robot.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1791&hizk=I

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>