Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tartalo the robot is knocking on your door

19.06.2008
A research team from the University of the Basque Country, led by Basilio Sierra, is devising a robot that can get around by itself. Tartalo is able to identify different places and ask permission before going through a doorway.

We are accustomed to seeing robots programmed to carry out a concrete task such as the robotic arms well known in industry. What is surprising is to see a robot walking without help and making decisions for itself. This is precisely what the Autonomous Robotics and Systems Research Team at the University of the Basque Country (UPV/EHU) are involved in: increasing the autonomy of robots so that they are evermore capable of carrying out more tasks on their own. Some years ago they developed Marisorgin, the robot for distributing mail and now they have put Tartalo into operation.

Those working on the third floor of the Computer Science Faculty in the Basque city of Donostia-San Sebastián find it normal and everyday to meet Tartalo in the corridors- meet, not bump into! This 1.5-metre tall, intelligent machine side-steps any obstacle in its path, thanks to sensors that have been installed around its “body”: sonars that emit and detect ultrasounds, infrared sensors and laser rays. The laser, for example, measures the distance of the robot from any object within a radius of 180 degrees. Mr Basilio Sierra’s team, although it did not build the robot, having acquired it, but it is developing and enhancing its abilities.

With these sensors and the computer that is the robot’s ‘brain’, Tartalo will have the wherewithal to move from one place to another without problems; in fact, to wander. What the research team at the Department of Computational Sciences and Artificial Intelligence want to achieve, however, is a robot capable of going anywhere it is told to.

Finding one’s way inside buildings

The machines best known for guiding one from a starting point to a given goal are GPS navigation systems. However, these do not function inside buildings and neither would it be realistic to create a database with the plans for every building in the world. For this reason the UPV/EHU researchers use biomimetic systems as a basis for developing the robot, meaning that Tartalo does the same as a person or animal on entering a new place: explore the terrain and take in points of reference. But, for a machine to carry out what living creatures do by, as it were, instinct, the computer programmers have to nevertheless put in a huge quantity of data, programmes and calculations.

Buildings are semi-structured environments wherein determined common spaces are always found. Tartalo has been “taught” (programmed) to recognise four of these: room, corridor, front hall and “junction”. Thus, if we were to take the robot to our home, the first thing it would have to do is to carry out a process of auto-location, going around the apartment in order to memorise the location of these four places. By this process the machine creates a species of topological map and the homeowner only has to teach it what each space is called. For this to be possible, UPV/EHU researchers are designing systems of interaction between machine and persons. For example, in order for the robot to understand instructions, they are perfecting a voice recognition system and touch screen.

Single eye, sharp vision

In order to identify what is in front, to distinguish between a room and a corridor, for example, Tartalo uses this single eye - which gives it its name – as a camera. It measures the images received through the eye-camera, compares them with its database and then evaluates probabilities to decide what the image that it has ahead looks like. The robot knows, for example, that if the space is long and narrow, it is a corridor.

The most important skill that Tartalo has been taught is to recognise doors. In fact, in order to access most of the places instructed to do so, the robot will have to pass through a doorway first. This is why the camera is located at the level of the doorknob or handle, which is what enables the identification of the door. When this happens, the system is programmed so that, when moving down a corridor, it seeks and negotiates doorways. If the door is closed, as it is not yet fitted with an arm to open it, it knocks two or three times on the door with its “feet”.

The aim of the UPV/EHU research team is to develop the navigation system of the robot and the recognition of doors is fundamental to this end. From now on, Tartalo will have to learn to distinguish between many other things, such as faces, voices or any object that it is asked to fetch. But each one of these actions requires a specific programme and this, for the time being, is outside the remit of the research being undertaken by the UPV/EHU Autonomous Robotics and Systems Research Team. Nevertheless, little by little the skills developed by other teams will be incorporated into this robot.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1791&hizk=I

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>