Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Fingerprint Breakthrough By Forensic Scientists

02.06.2008
University of Leicester and Northamptonshire Police research reveals new techniques for identifying prints on metal
Forensic scientists at the University of Leicester, working with Northamptonshire Police, have announced a major breakthrough in crime detection which could lead to hundreds of cold cases being reopened.

The University’s Forensic Research Centre has been working with Northamptonshire Police’s scientific support unit to develop new ways of taking fingerprints from a crime scene.

Researchers in the University Department of Chemistry and the Police’s scientific support unit have developed the method that enables scientists to ‘visualise fingerprints’ even after the print itself has been removed. They conducted a study into the way fingerprints can corrode metal surfaces. The technique can enhance – after firing– a fingerprint that has been deposited on a small calibre metal cartridge case before it is fired.

Dr John Bond, Honorary Fellow at the University of Leicester and Scientific Support Manager at Northamptonshire Police said: “For the first time we can get prints from people who handled a cartridge before it was fired.”

"Wiping it down, washing it in hot soapy water makes no difference - and the heat of the shot helps the process we use.

“The procedure works by applying an electric charge to a metal - say a gun or bullet - which has been coated in a fine conducting powder, similar to that used in photocopiers.

“Even if the fingerprint has been washed off, it leaves a slight corrosion on the metal and this attracts the powder when the charge is applied, so showing up a residual fingerprint.

“The technique works on everything from bullet casings to machine guns. Even if heat vaporises normal clues, police will be able to prove who handled a particular gun.”

Dr. Bond’s initial findings, which prompted the joint study, have been announced in a paper in the American Journal of Forensic Science.

Professor Rob Hillman of the Department of Chemistry added: “It is very satisfying to see excellent fundamental science being applied to a practical problem. We are delighted to have the opportunity to collaborate with Dr. Bond and his colleagues and we look forward to some very exciting chemistry and its application to forensic science.”

As a result of the research, cases dating back decades could be reopened because the underlying print never disappears, say the scientists. The technique also works in cases where prints may be left on other metals.

Dr Bond added: "It's certainly possible hundreds of cold cases could be reopened because with this method the only way to avoid a fingerprint being detected is through abrasive cleaning as that takes a layer off the metal.

Dr Emma Palmer, Director of the University's Forensic Research Centre said: “This collaboration between the University of Leicester and Northamptonshire Police is an excellent example of applying research to a practical problem in crime detection.”

Dr Bond and Professor Rob Hillman of the Chemistry Department at the University now intend to take this research forward via a three-year Ph.D. studentship to commence next academic year. The new project will explore further the corrosion of metal by fingerprint residue and investigate how it might be used to detect more crime with forensic science.

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk/press/experts/intro.html

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>