Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emergency Links: Researchers Identify ‘Sweet Spot’ for Radios in Tunnels

15.05.2008
Researchers at NIST have confirmed that underground tunnels - generally a difficult setting for radios - can have a frequency 'sweet spot' at which signals may travel several times farther than at other frequencies. The finding may point to strategies for enhancing rescue communications in subways and mines.

As part of a project to improve wireless communications for emergency responders, researchers at the National Institute of Standards and Technology (NIST) have confirmed that underground tunnels—generally a difficult setting for radios—can have a frequency “sweet spot” at which signals may travel several times farther than at other frequencies. The finding, which uses extensive new data to confirm models developed in the 1970s, may point to strategies for enhancing rescue communications in subways and mines.

The optimal frequency depends on the dimensions of the tunnel. For a typical subway-sized tunnel, the sweet spot is found in the frequency range 400 megahertz (MHz) to 1 gigahertz (GHz). This effect is described in one of two new NIST publications.* The reports are part of a NIST series contributing to the first comprehensive public data collection on radio transmissions in large buildings and structures. Historically, companies have designed radios based on proprietary tests. The NIST data will support the development of open standards for design of optimal systems, especially for emergency responders.

NIST researchers were surprised by how much farther signals at the optimal frequency traveled in above-ground building corridors, as well as underground. Tunnels can channel radio signals in the right frequency range because they act like giant waveguides, the pipelike channels that confine and direct microwaves on integrated circuit wafers, and in antenna feed systems and optical fibers. The channel shape reduces the losses caused when signals are absorbed or scattered by structural features. The waveguide effect depends on a tunnel’s width, height, surface material and roughness, and the flatness of the floor as well as the signal frequency. NIST authors found good agreement between their measured data and theoretical models, leading to the conclusion that the waveguide effect plays a significant role in radio transmissions in tunnels.

Lead author Kate Remley notes that the results may help design wireless systems that improve control of, for example, search and rescue robots in subways. Some handheld radios used by emergency responders for voice communications already operate within the optimal range for a typical subway, between around 400 MHz and 800 MHz. To provide the broadband data transfer capability desired for search and rescue with video (a bandwidth of at least 1 MHz), a regulatory change would be needed, Remley says.

The tunnel studies were performed in 2007 at Black Diamond Mines Regional Park near Antioch, Calif., an old complex used in the early 1900s to extract pure sand for glass production.

The second new NIST report** describes mapping of radio signals in 12 large building structures including an apartment complex, a hotel, office buildings, a sports stadium and a shopping mall.

The research is supported in part by the U.S. Department of Justice and the Department of Homeland Security. Both reports will be available on NIST’s Metrology for Wireless Systems Web page (http://www.boulder.nist.gov/div818/81802/MetrologyForWirelessSys/).

* K. A. Remley, G. Koepke, C. L. Holloway, C. Grosvenor, D.G. Camell, J. Ladbury, R.T. Johnk, D. Novotny, W.F. Young, G. Hough, M.D. McKinley, Y. Becquet and J. Korsnes. “Measurements to Support Modulated-Signal Radio Transmissions for the Public-Safety Sector”. NIST Technical Note 1546, April, 2008, http://www.boulder.nist.gov/div818/81802/MetrologyForWirelessSys/

pubs/R13_NIST_TN1546_Modulated_Signal_(Web)1.pdf.

** C. L. Holloway, W.F. Young, G. H. Koepke, K. A. Remley, D. G. Camell and Y. Becquet. “Attenuation of Radio Wave Signals Into Twelve Large Building Structures”. NIST Technical Note 1545.

Laura Ost | newswise
Further information:
http://patapsco.nist.gov/ImageGallery/details.cfm?imageid=540
http://www.nist.gov

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>