Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internet revolutioneras med Grid-teknologin

28.03.2008
First there was the Internet­and now the time is ripe for Grid, a new technology that will turn a regular PC into a sort of supercomputer. The World Wide Web was first developed at CERN, the European laboratory for high-energy physics in Geneva.

Physicists are also behind the development of Grid technology, now within the framework of the EU project KnowArc, with partners in seven countries. Lund University in Sweden is playing a key role. The first Grid software packages were developed there for full-scale operation. The technological coordination of KnowArc is now also centered there.

What got physicists interested in Grid technology is CERN's new particle accelerator, LHC. It will be producing enormous amounts of data that needs to be stored and processed. In the last few days the Swedish government minister in charge of research, Lars Leijonborg, visited CERN and announced that Sweden should invest in Grid technology and that the country will take the international lead in its development. In the research bill to be introduced this autumn, new funding will be allocated to what is being called "e-science." In other words, this commitment will not be made at the expense of other research.

The Internet revolutionized how we exchange information and thus stimulated the advent of digital technology in all aspects of life. Thanks to the Internet, masses of data can be transferred and made available. But this is not enough if data is also to be processed, in connection with scientific calculations, for instance.

Today's technology is based on the data and the resources needed to process it being in one and the same place. Grid technology strives to allow transparent collaboration in terms of processor power, storage space, and data-collection tools in the form of scientific instruments even though they may be distributed geographically. The user doesn't even need to know the location of the computing capacity and the data masses being used. This technology has scored major successes in recent years. Software solutions have been developed to support teamwork between applications on different computers. Theoretical models and trial configurations have gradually been replaced by practically functioning and efficient distributed computer infrastructures both within and between countries.

The technological development and coordination of KnowArc is directed by Balázs Kónya at the Department of Physics, Lund University. The local Lund group that works with Grid technology is directed by Oxana Smirnova, who says:

"The Internet can be likened to transport routes; the Grid net is both a transport route and a factory. To physicists, Grid technology will be necessary now that LHC will be producing tremendous amounts of data. Other sciences that also generate large amounts of data are waiting in the wings, including biomedicine, genetics, proteomics, and radio astronomy. But ultimately we hope that Grid technology will be of use to all computer users, just as the World Wide Web has been."

More information: http://www.knowarc.eu, http://www.nordugrid.org, http://www.ndgf.org, http://www.hep.lu.se , http://www.cern.ch For further comments, Oxana Smirnova can be reached at phone: +46 (0)46 222 76 99, e-mail Oxana.Smirnova@hep.lu.se

Göran Frankel | idw
Further information:
http://www.vr.se

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>