Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cutting edge computing helps discover the origin of life

The UK’s national computing grid, along with their counterparts in the US (TeraGrid) and Europe have helped UCL (University College London) scientists shed light on how life on earth may have originated.

Deep ocean hydrothermal vents have long been suggested as possible sources of biological molecules such as RNA and DNA but it was unclear how they could survive the high temperatures and pressures that occur round these vents.

In a study published today in the Journal of the American Chemical Society, Professor Peter Coveney and colleagues at the UCL Centre for Computational Science have used computer simulation to provide insight into the structure and stability of DNA while inserted into layered minerals. Computer simulation techniques have rarely been used to understand the possible chemical pathways to the formation of early biomolecules until now.

Professor Coveney explains, “Computational grids are only now being made easy to use for scientists, enabling simulations of sufficient size to model these large biomolecule and mineral systems”.

Previous experimental studies have shown that molecules such as DNA can be inserted into minerals called layered double hydroxides (LDHs) but no one has thus far been able to show at the level of atoms and molecules how the DNA interacts with the mineral, or how the DNA might look inside the mineral layers. These minerals would have been common in the earliest age of Earth 2500 million years ago.

The simulations reproduced the high temperatures and pressures that occur around hydrothermal vents. It was shown that the structure of DNA inserted into layered minerals becomes stabilized at these conditions and therefore protected from catalytic and thermal degradation.

“Grids of supercomputers are essential for this kind of study”, says Professor Coveney, “The time taken to run these simulations is reduced from the years that a desktop computer would take, to hours by using the many thousands of processors made available across continents”.

Professor Coveney’s group has been researching into the routes to the origin of life for a number of years, studying the way that genetic information may have arisen and been replicated, as well as how small molecules may have formed, working together with colleagues at Nottingham and Durham Universities.

Gillian Sinclair | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>