Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haptics: just reach out and touch, virtually

28.01.2008
European researchers have pioneered a breakthrough interface that allows people to touch, stretch and pull virtual fabrics that feel like the real thing. The new multi-modal software linked to tactile hardware and haptics devices have enormous potential for shopping, design and human-machine interaction.

A revolutionary new interface allows users to really feel virtual textiles. The system combines a specially designed glove, a sophisticated computer model and visual representation to reproduce the sensation of cloth with an impressive degree of realism.

“It is a multi-modal approach that has never been tried before,” says Professor Nadia Magnenat-Thalmann, coordinator of the HAPTEX project. HAPTEX stands for Haptic sensing of virtual textiles.

The new system is a major breakthrough achieved through highly focused work of a small consortium of five research institutes. In just three years, they have created a pre-commercialisation prototype of the device and its related multi-modal software.

But it was not easy. Creating the realistic sensation of deformable textiles required a huge amount of modelling. “That was our first big challenge,” says Magnenat-Thalmann, taking precise measurements of the tensile, bending and stretching properties of the material.

“You also need very high resolution; the visual system will give a realistic impression of movement with just 20 frames a second, but touch is much more sensitive. You need a thousand samples a second to recreate touch,” she tells ICT Results.

Major challenges

In the end, the team created two models. One global model tracks the overall properties of the material. A second, fine-resolution model then maps the actual sensation on skin. All this information had to be combined with a detailed visual representation of the textile.

“That was another major problem,” notes Magnenat-Thalmann, “because the two must be in sync or the sensation will not be realistic.” Like a video with the audio out of sync, any latency between the visual and the sensual destroys the effect.

These were three major challenges from the outset, but they were just the beginning. “We had major jobs to do with the hardware, too. Nobody has combined a force-feedback device with a tactile one,” reports Magnenat-Thalmann.

HAPTEX overcame this problem by developing a powered exoskeleton glove with a pair of pin arrays that provide tactile sensation to two fingers. The glove gives the sensation of bending and stretching the fabric, while the pin arrays convey texture. Then this integrated device is combined with the visual and tactile database to give an overall impression.

Feeling is believing

“We have a working prototype device and we have validated it. It gives a reliable and reproducible sensation of real fabrics in a virtual world,” says Magnenat-Thalmann.

Reviewers were very impressed with the project’s results, but Magnenat-Thalmann says the project did not achieve all that they hoped for. “Originally, our vision was to create a system that allowed users to distinguish between, say, cotton, wool and silk in a blind test. The system is not that sensitive yet.”

It is, however, in pre-commercialisation form. The team now hopes to secure funding for a second project that will take the device from prototype stage to full commercialisation. If they succeed, it will be a first of its kind.

It will also mean entirely new markets. The textile industry and online shopping are obvious examples, but Magnenat-Thalmann also sees applications in gaming, where it could be used to make virtual worlds more realistic.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89473

More articles from Information Technology:

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>