Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haptics: just reach out and touch, virtually

28.01.2008
European researchers have pioneered a breakthrough interface that allows people to touch, stretch and pull virtual fabrics that feel like the real thing. The new multi-modal software linked to tactile hardware and haptics devices have enormous potential for shopping, design and human-machine interaction.

A revolutionary new interface allows users to really feel virtual textiles. The system combines a specially designed glove, a sophisticated computer model and visual representation to reproduce the sensation of cloth with an impressive degree of realism.

“It is a multi-modal approach that has never been tried before,” says Professor Nadia Magnenat-Thalmann, coordinator of the HAPTEX project. HAPTEX stands for Haptic sensing of virtual textiles.

The new system is a major breakthrough achieved through highly focused work of a small consortium of five research institutes. In just three years, they have created a pre-commercialisation prototype of the device and its related multi-modal software.

But it was not easy. Creating the realistic sensation of deformable textiles required a huge amount of modelling. “That was our first big challenge,” says Magnenat-Thalmann, taking precise measurements of the tensile, bending and stretching properties of the material.

“You also need very high resolution; the visual system will give a realistic impression of movement with just 20 frames a second, but touch is much more sensitive. You need a thousand samples a second to recreate touch,” she tells ICT Results.

Major challenges

In the end, the team created two models. One global model tracks the overall properties of the material. A second, fine-resolution model then maps the actual sensation on skin. All this information had to be combined with a detailed visual representation of the textile.

“That was another major problem,” notes Magnenat-Thalmann, “because the two must be in sync or the sensation will not be realistic.” Like a video with the audio out of sync, any latency between the visual and the sensual destroys the effect.

These were three major challenges from the outset, but they were just the beginning. “We had major jobs to do with the hardware, too. Nobody has combined a force-feedback device with a tactile one,” reports Magnenat-Thalmann.

HAPTEX overcame this problem by developing a powered exoskeleton glove with a pair of pin arrays that provide tactile sensation to two fingers. The glove gives the sensation of bending and stretching the fabric, while the pin arrays convey texture. Then this integrated device is combined with the visual and tactile database to give an overall impression.

Feeling is believing

“We have a working prototype device and we have validated it. It gives a reliable and reproducible sensation of real fabrics in a virtual world,” says Magnenat-Thalmann.

Reviewers were very impressed with the project’s results, but Magnenat-Thalmann says the project did not achieve all that they hoped for. “Originally, our vision was to create a system that allowed users to distinguish between, say, cotton, wool and silk in a blind test. The system is not that sensitive yet.”

It is, however, in pre-commercialisation form. The team now hopes to secure funding for a second project that will take the device from prototype stage to full commercialisation. If they succeed, it will be a first of its kind.

It will also mean entirely new markets. The textile industry and online shopping are obvious examples, but Magnenat-Thalmann also sees applications in gaming, where it could be used to make virtual worlds more realistic.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89473

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>