Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haptics: just reach out and touch, virtually

28.01.2008
European researchers have pioneered a breakthrough interface that allows people to touch, stretch and pull virtual fabrics that feel like the real thing. The new multi-modal software linked to tactile hardware and haptics devices have enormous potential for shopping, design and human-machine interaction.

A revolutionary new interface allows users to really feel virtual textiles. The system combines a specially designed glove, a sophisticated computer model and visual representation to reproduce the sensation of cloth with an impressive degree of realism.

“It is a multi-modal approach that has never been tried before,” says Professor Nadia Magnenat-Thalmann, coordinator of the HAPTEX project. HAPTEX stands for Haptic sensing of virtual textiles.

The new system is a major breakthrough achieved through highly focused work of a small consortium of five research institutes. In just three years, they have created a pre-commercialisation prototype of the device and its related multi-modal software.

But it was not easy. Creating the realistic sensation of deformable textiles required a huge amount of modelling. “That was our first big challenge,” says Magnenat-Thalmann, taking precise measurements of the tensile, bending and stretching properties of the material.

“You also need very high resolution; the visual system will give a realistic impression of movement with just 20 frames a second, but touch is much more sensitive. You need a thousand samples a second to recreate touch,” she tells ICT Results.

Major challenges

In the end, the team created two models. One global model tracks the overall properties of the material. A second, fine-resolution model then maps the actual sensation on skin. All this information had to be combined with a detailed visual representation of the textile.

“That was another major problem,” notes Magnenat-Thalmann, “because the two must be in sync or the sensation will not be realistic.” Like a video with the audio out of sync, any latency between the visual and the sensual destroys the effect.

These were three major challenges from the outset, but they were just the beginning. “We had major jobs to do with the hardware, too. Nobody has combined a force-feedback device with a tactile one,” reports Magnenat-Thalmann.

HAPTEX overcame this problem by developing a powered exoskeleton glove with a pair of pin arrays that provide tactile sensation to two fingers. The glove gives the sensation of bending and stretching the fabric, while the pin arrays convey texture. Then this integrated device is combined with the visual and tactile database to give an overall impression.

Feeling is believing

“We have a working prototype device and we have validated it. It gives a reliable and reproducible sensation of real fabrics in a virtual world,” says Magnenat-Thalmann.

Reviewers were very impressed with the project’s results, but Magnenat-Thalmann says the project did not achieve all that they hoped for. “Originally, our vision was to create a system that allowed users to distinguish between, say, cotton, wool and silk in a blind test. The system is not that sensitive yet.”

It is, however, in pre-commercialisation form. The team now hopes to secure funding for a second project that will take the device from prototype stage to full commercialisation. If they succeed, it will be a first of its kind.

It will also mean entirely new markets. The textile industry and online shopping are obvious examples, but Magnenat-Thalmann also sees applications in gaming, where it could be used to make virtual worlds more realistic.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/id/89473

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>