Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report identifies research to bolster knowledge of health effects of wireless communication devices

22.01.2008
The rapid increase in the use of wireless communication devices in recent years has been accompanied by a significant amount of research into potential health effects from high exposure to radiofrequency (RF) energy emitted by these devices. A new National Research Council report, requested by the U.S. Food and Drug Administration, identifies research that could further extend understanding of long-term low exposure to these devices.

The committee that wrote the report identified research needs and gaps based on presentations made by international experts and discussion sessions with attendees at a three-day workshop last August that evaluated disciplines and topics such as measurement of RF energy and exposure, studies on human populations, human laboratory measurements, and animal and cell biology.

In the report, research needs are defined as studies that, in the near term, could increase understanding of any potential adverse effects of RF energy on humans. Gaps are defined as research studies that are of lower priority or that should not be carried out until the results of current research studies are evaluated. The committee did not evaluate potential health effects or recommend how the identified research needs should be met.

One research need the committee identified is studies of any potential health consequences from multiple, long-term, low-intensity RF exposure as opposed to most of the present data that evaluates acute effects on healthy adults during short exposures to RF fields. For instance, measuring the amount of RF energy received by juveniles, children, pregnant women, and fetuses from wireless devices and RF base station antennas could help define exposure ranges for various populations.

Although it is unknown whether children are more susceptible to RF exposure, they may be at increased risk because of their developing organ and tissue systems. Additionally, Specific Absorption Rates (SAR) for children are likely to be higher than for adults, because exposure wavelength is closer to the whole-body resonance frequency for shorter individuals. The current generation of children will also experience a longer period of RF field exposure from mobile phone use than adults, because they will most likely start using them at an early age. The report notes that several surveys have shown a steep increase in mobile phone ownership among children, but virtually no relevant studies of human populations at present examine health effects in this population.

The evolving types of antennas for hand-held wireless communication devices also should be analyzed for the amount of RF energy they deliver to different parts of the body so the data would be available for use in future studies, the committee said. Studies to understand the effects of RF energy irradiation from cell phone antennas on the human head have already been conducted. However, for most of these studies, the research has assumed that cell phones have pull-out linear rod antennas and are held against a person's ear. Many newer telephones use built-in antennas for which additional SAR data are needed, the report says. Also, wireless technology is now used in laptop computers and hand-held texting and Web-surfing devices, in which the antennas are close to other parts of the body.

Other research needs identified by the committee include:

Completing a prospective study of adults in a general population and a retrospective group with medium to high occupational exposures.

Conducting human laboratory studies that focus on possible effects of RF electromagnetic fields on neural networks and the brain's electrical activity.

Completing human population studies of children and pregnant women, including childhood cancers and brain cancer.

Evaluating effects of RF doses at the microscopic level.

Characterizing radiated electromagnetic fields for typical multiple-element base station antennas and exposures to affected individuals.

Jennifer Walsh | EurekAlert!
Further information:
http://www.nas.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>