Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software wrapper for smarter, networked homes

21.12.2007
Homes today are filled with increasing numbers of high-tech gadgets, from smart phones and PCs to state-of-the-art TV and audio systems, many of them with built-in networking capabilities. Combined, these devices could form the building blocks of the smart homes of the future, but only if they can be made to work together intelligently. European researchers are addressing the challenge.

Although the idea of creating intelligent networked home environments as a way to make life easier, safer and more enjoyable has been around for some time, the technology has yet to catch up with the vision. Home automation systems have become more commonplace and consumer electronics have more networking capability, but no one has, so far, gotten all the high-tech and not so high-tech gadgetry cluttering modern homes to work together in an intelligent way. It is not yet common for fridges to talk to your TV to warn that the door has been left open or for heating systems to turn on when you return home, for example.

“People are finding themselves with all these networkable devices and are wondering where the applications are that can use these devices to make life easier and how they could be of more value together than individually,” says Maddy Janse, a researcher for Dutch consumer electronics group Philips.

There are two fundamental obstacles to realising the vision of the intelligent networked home: lack of interoperability between individual devices and the need for context-aware artificial intelligence to manage them. And, to make smart homes a reality, the two issues must be addressed together.

Software wrapper to get gadgets talking

The EU-funded Amigo project, coordinated by Janse, is doing just that, creating a middleware software platform that will get all networkable devices in the home talking to each other and providing an artificial intelligence layer to control them.

“With the Amigo system, you can take any networkable device, create a software wrapper for it and dynamically integrate it into the networked home environment,” Janse explains.

The project, which involves several big industrial and research partners, is unique in that it is addressing the issues of interoperability and intelligence together and, most significantly, its software is modular and open source.

By steering away from creating a monolithic system and making the software accessible to all, the partners believe they can overcome the complications that have held back other smart home projects. For consumer electronics companies and telecoms firms, the system has the additional benefit of providing a test bed for new products and services.

“What we are trying to do is so large and so complex that it has to be broken down into smaller parts. By making it open source and letting third-party developers create applications we can ensure the system addresses whatever challenges arise,” Janse says.

The Amigo architecture consists of a base middleware layer, an intelligent user services layer, and a programming and deployment framework that developers can use to create individual applications and services. These individual software modules form the building blocks of the networked home environment, which has the flexibility to grow as and when new devices and applications are added.

Interoperability is ensured through support for and abstraction of common interaction and home automation standards and protocols, such as UPnP and DNLA as well as web services, while the definition of appropriate ontologies enables common understanding at a semantic level.

“A lot of applications are already available today and more will be created as more developers start to use the software,” Janse says.

A vision of the future

A video created by the project partners underscores their vision for the future in which homes adapt to the behaviour of occupants, automatically setting ambient lighting for watching a movie, locking the doors when someone leaves or contacting relatives or emergency services if someone is ill or has an accident. In an extended home environment, the homes of friends and relatives are interconnected, allowing information and experiences to be shared more easily and setting the stage for the use of tele-presence applications to communicate and interact socially.

Initially, Janse sees such networked systems being employed in larger scale environments than an individual home or for specific purposes. Some subsets of applications could be rolled out in hotels or hospitals or used to monitor the wellbeing of the elderly or infirm, for example.

“With the exception of people with a lot of money building their homes from scratch, it will be a while before intelligent networked homes become commonplace,” the coordinator notes. “In addition, this isn’t something average consumers can easily set up themselves, currently some degree of programming knowledge is needed and installers need to become familiar with the concepts and their potential.”

Even so, the project is hoping to continue to stimulate the growth of the sector.

In October, it launched the Amigo Challenge, a competition in which third-party programmers have been invited to come up with new applications using the Amigo software. Janse expects the initiative will lead to the software being used in even more innovative and possibly unexpected ways.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89362

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>