Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software wrapper for smarter, networked homes

21.12.2007
Homes today are filled with increasing numbers of high-tech gadgets, from smart phones and PCs to state-of-the-art TV and audio systems, many of them with built-in networking capabilities. Combined, these devices could form the building blocks of the smart homes of the future, but only if they can be made to work together intelligently. European researchers are addressing the challenge.

Although the idea of creating intelligent networked home environments as a way to make life easier, safer and more enjoyable has been around for some time, the technology has yet to catch up with the vision. Home automation systems have become more commonplace and consumer electronics have more networking capability, but no one has, so far, gotten all the high-tech and not so high-tech gadgetry cluttering modern homes to work together in an intelligent way. It is not yet common for fridges to talk to your TV to warn that the door has been left open or for heating systems to turn on when you return home, for example.

“People are finding themselves with all these networkable devices and are wondering where the applications are that can use these devices to make life easier and how they could be of more value together than individually,” says Maddy Janse, a researcher for Dutch consumer electronics group Philips.

There are two fundamental obstacles to realising the vision of the intelligent networked home: lack of interoperability between individual devices and the need for context-aware artificial intelligence to manage them. And, to make smart homes a reality, the two issues must be addressed together.

Software wrapper to get gadgets talking

The EU-funded Amigo project, coordinated by Janse, is doing just that, creating a middleware software platform that will get all networkable devices in the home talking to each other and providing an artificial intelligence layer to control them.

“With the Amigo system, you can take any networkable device, create a software wrapper for it and dynamically integrate it into the networked home environment,” Janse explains.

The project, which involves several big industrial and research partners, is unique in that it is addressing the issues of interoperability and intelligence together and, most significantly, its software is modular and open source.

By steering away from creating a monolithic system and making the software accessible to all, the partners believe they can overcome the complications that have held back other smart home projects. For consumer electronics companies and telecoms firms, the system has the additional benefit of providing a test bed for new products and services.

“What we are trying to do is so large and so complex that it has to be broken down into smaller parts. By making it open source and letting third-party developers create applications we can ensure the system addresses whatever challenges arise,” Janse says.

The Amigo architecture consists of a base middleware layer, an intelligent user services layer, and a programming and deployment framework that developers can use to create individual applications and services. These individual software modules form the building blocks of the networked home environment, which has the flexibility to grow as and when new devices and applications are added.

Interoperability is ensured through support for and abstraction of common interaction and home automation standards and protocols, such as UPnP and DNLA as well as web services, while the definition of appropriate ontologies enables common understanding at a semantic level.

“A lot of applications are already available today and more will be created as more developers start to use the software,” Janse says.

A vision of the future

A video created by the project partners underscores their vision for the future in which homes adapt to the behaviour of occupants, automatically setting ambient lighting for watching a movie, locking the doors when someone leaves or contacting relatives or emergency services if someone is ill or has an accident. In an extended home environment, the homes of friends and relatives are interconnected, allowing information and experiences to be shared more easily and setting the stage for the use of tele-presence applications to communicate and interact socially.

Initially, Janse sees such networked systems being employed in larger scale environments than an individual home or for specific purposes. Some subsets of applications could be rolled out in hotels or hospitals or used to monitor the wellbeing of the elderly or infirm, for example.

“With the exception of people with a lot of money building their homes from scratch, it will be a while before intelligent networked homes become commonplace,” the coordinator notes. “In addition, this isn’t something average consumers can easily set up themselves, currently some degree of programming knowledge is needed and installers need to become familiar with the concepts and their potential.”

Even so, the project is hoping to continue to stimulate the growth of the sector.

In October, it launched the Amigo Challenge, a competition in which third-party programmers have been invited to come up with new applications using the Amigo software. Janse expects the initiative will lead to the software being used in even more innovative and possibly unexpected ways.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89362

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>