Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sshhh, it’s listening: totally new computer interfaces

19.12.2007
Keyboards are a necessary part of today’s computers, right? Maybe not for much longer. A group of European scientists have used acoustic sensors to turn wooden tabletops and even three-dimensional objects into a new type of computer interface.

Sound vibrating a windowpane or through a tabletop is something most people experience daily. Sound waves travel well through most solid materials. Now, European researchers have exploited the excellent propagation of sound waves through solids to turn everyday objects – including 3D objects – into a new kind of computer interface.

By attaching sensors to solid materials, researchers from TAI-CHI, a project working with Tangible Acoustic Interfaces for Computer-Human Interaction, were able to locate exactly and track acoustic vibrations. Tapping on discrete areas of a whiteboard could generate musical notes on a computer. Tracking the sound of a finger scrawling words on a sheet of hardboard could translate, in real time, into handwriting on a computer screen. There is no need for overlays or intrusive devices.

Sensing vibrations in a solid and converting them to electrical pulses is the easy bit. Exactly locating the source of that vibration in a solid material is where it gets complicated. The problem is that the complex structures of solids make wave propagation difficult to model. Wood knots in a desktop, for instance, will alter how acoustic vibrations disperse.

Reading the signals
The TAI-CHI team investigated four main technologies. Time Delay of Arrival (TDOA) uses three or more sensors and compares the difference in arrival times of an acoustic wave at each of the sensors to establish location. In fact, the concept of TDOA has been around for about 100 years. Provided you know the propagation velocity of acoustic waves through the solid material, TDOA provides a very practical, if rather expensive, solution.

Time reversal, on the other hand, needs only a single sensor. It works on the notion that each location on the surface of a solid generates a unique impulse response which can be recorded and used to calibrate the object. Time reversal works on 3D objects just as well as flat surfaces.

MUlti-Sensor Tracking through the Reversal of Dispersion (MUST-RD) requires a deep understanding of the wave-dispersion properties of the solid. The dispersion curve of acoustic waves moving through the material under test is compared to a database of dispersion curves for common materials. From the comparison, the location of the vibration source can be calculated. (MUST-RD can also be used to give a crude estimation of a material type.)

Finally, TAI-CHI researchers worked with in-solid acoustic holography. Using sound pressure, sound intensity or particle velocity to calculate position and time, a sound source can be mapped and visualised in much the same way as an infrared camera can map heat sources. Some of the TAI-CHI researchers also experimented with a combination of acoustic localisation and Doppler tracking to locate and track sound sources moving through the air.

The range of researchers brought together by the project, part-funded by the European Commission – in Germany, France, Italy, England, Wales and Switzerland – was an important factor in its success, according to TAI-CHI coordinator, Dr Ming Yang of the University of Cardiff.

Specialist solution
Tangible acoustic interfaces like this are not going to replace keyboards and computer mice in the near future, says Dr Ming Yang. But in specific environments where keyboards are impractical – perhaps in very dirty environments or in hospitals where a keyboard might be a hiding place for bugs – TAIs could provide an elegant solution.

“Time reversal is a beautiful technology,” he says. “Unlike TDOA, it works with any object and it does not require special materials. Because it needs only a single sensor and a normal computer, it is very simple and cost-effective. One spin-off company from the University of Paris is working on commercial applications for this.”

Other technologies, such as acoustic holography, show great promise but are not ready for commercialisation.

CeTT, a Swiss member of the consortium, has put together a TAI-CHI Developer’s Kit, comprising algorithms developed during the project, software and hardware, as a one-stop-shop for application developers looking to build on TAI-CHI breakthroughs.

Other applications include a wireless sensor using Bluetooth technology that Dr Ming Yang would like to develop with commercial partners.

The time-reverse technology is the project’s major breakthrough, according to Dr Ming Yang. “Before, people were only working on easy materials. We have developed it for metal, plastic and board. We have a really interactive interface.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89389

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>