Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computer components 'coalesce' to 'converse'

27.10.2011
If quantum computers are ever to be realized, they likely will be made of different types of parts that will need to share information with one another, just like the memory and logic circuits in today's computers do.

However, prospects for achieving this kind of communication seemed distant—until now. A team of physicists working at the National Institute of Standards and Technology (NIST) has shown* for the first time how these parts might communicate effectively.


[1] A single photon is produced by a quantum dot (QD). Simultaneously, a pair of photons is produced by a parametric down-conversion crystal (PDC). [2] One of the PDC photons -- which has different characteristics than the QD photon -- is routed into a cavity and filter, [3] rendering this PDC photon and the QD photon nearly identical. Credit: Suplee, NIST

The goal to develop quantum computers—a long-awaited type of computer that could solve otherwise intractable problems, such as breaking complex encryption codes—has inspired scientists the world over to invent new devices that could become the brains and memory of these machines. Many of these tiny devices use particles of light, or photons, to carry the bits of information that a quantum computer will use.

But while each of these pieces of hardware can do some jobs well, none are likely to accomplish all of the functions necessary to build a quantum computer. This implies that several different types of quantum devices will need to work together for the computer or network to function. The trouble is that these tiny devices frequently create photons of such different character that they cannot transfer the quantum bits of information between one another. Transmuting two vastly different photons into two similar ones would be a first step toward permitting quantum information components to communicate with one another over large distances, but until now this goal has remained elusive.

However, the team has demonstrated that it is possible to take photons from two disparate sources and render these particles partially indistinguishable. That photons can be made to "coalesce" and become indistinguishable without losing their essential quantum properties suggests in principle that they can connect various types of hardware devices into a single quantum information network. The team's achievement also demonstrates for the first time that a "hybrid" quantum computer might be assembled from different hardware types.

The team connected single photons from a "quantum dot," which could be useful in logic circuits, with a second single-photon source that uses "parametric down conversion," which might be used to connect different parts of the computer. These two sources typically produce photons that differ so dramatically in spectrum that they would be unusable in a quantum network. But with a deft choice of filters and other devices that alter the photons' spectral shapes and other properties, the team was able to make the photons virtually identical.

"We manipulate the photons to be as indistinguishable as possible in terms of spectra, location and polarization—the details you need to describe a photon. We attribute the remaining distinguishability to properties of the quantum dot," says Glenn Solomon, of NIST's Quantum Measurement Division. "No conceivable measurement can tell indistinguishable photons apart. The results prove in principle that a hybrid quantum network is possible and can be scaled up for use in a quantum network."

The research team includes scientists from the NIST/University of Maryland Joint Quantum Institute (JQI) and Georgetown University. The NSF Physics Frontier Center at JQI provided partial funding

*S.V. Polyakov, A. Muller, E.B. Flagg, A. Ling, N. Borjemscaia, E. Van Keuren, A. Migdall and G.S. Solomon. Coalescence of single photons from dissimilar single-photon sources. Physical Review Letters, 107, 157402 (2011), DOI: 10.1103/PhysRevLett.107.157402.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>