Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prostheses with Sensory Feedback

06.02.2014
Freiburg researchers have developed electrodes that help amputees to grasp at objects

The patient Dennis Aabo Sorensen grasps at a mandarin orange with his artificial hand. Source: LifeHand2 Project


The patient Dennis Aabo Sorensen grasps at a mandarin orange with his artificial hand. Source: LifeHand2 Project

An artificial limb that enables amputees to grasp at an object and feel it as though they were using their real hand: Thanks to Freiburg microsystems engineer Prof. Dr. Thomas Stieglitz and the international research group participating in the project LifeHand2, this has now become a reality. The scientists present the findings of their project in the journal Science Translational Medicine.

Surgeons implanted two ultra-thin electrodes each directly into the ulnar and median nerves in the upper arm of Dennis Aabo Sørensen, a patient with an amputated lower arm. The electrodes send sensory data by means of electrical impulses from the patient’s artificial hand directly to his brain over the peripheral nervous system. They give him information about the shape and consistency of the objects he grasps at – even when he cannot see them.

The patient learned to control his artificial hand with only little prior training and more quickly than the scientists had thought possible. He managed to sense objects like a plastic cup, a mandarin orange, and a heavy block of wood while being blindfolded and to take hold of them with a precise grip and the right amount of force. The combination of technology and the patient’s biological system worked almost intuitively.

The electrodes were developed in Thomas Stieglitz’ laboratory, professor of Biomedical Microtechnology at the Department of Microsystems Engineering of the University of Freiburg. “Our research helps patients who have lost a limb to move their prostheses in a completely natural way. It is always a very special moment for me as an engineer to see technological developments be implemented successfully on a patient after many years in the lab,” said the researcher. As this was only an initial test, the electrodes will have to be removed after 30 days as per the European directive on medical devices. The team plans to conduct further studies on patients in Rome, Italy; Lausanne, Switzerland; and Aalborg, Denmark.

Six research institutions in Italy, Switzerland, and Germany are participating in the project LifeHand 2. Launched in 2008, the project originated from the European Union–funded project TIME and the Italian project NEMESIS. The clinical director of the study is Prof. Dr. Paolo Maria Rossini, and the operation was performed by Prof. Dr. Eduardo Marcos Fernandez. Both are from the Agostino Gemelli University Polyclinic in Rome. The project director is Prof. Dr. Silvestro Micera from the Swiss Federal Institute of Technology in Lausanne.


Original publication
S. Raspopovic, M. Capogrosso, F. M. Petrini, M. Bonizzato, J. Rigosa, G. D. Pino, J. Carpaneto, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C. M. Oddo, L. Citi, A. L. Ciancio, C. Cipriani, M. C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P. M. Rossini, S. Micera, Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci. Transl. Med. 6, 222ra19 (2014). http://stm.sciencemag.org/content/6/222/222ra19
Further information on Surprising Science:
www.pr.uni-freiburg.de/go/lifehand2
Film and photo material available on request.
Contact:
Prof. Dr. Thomas Stieglitz
Laboratory for Biomedical Microtechnology
Department of Microsystems Engineering (IMTEK)
Phone: +49 (0)761 / 203-7471
E-Mail: thomas.stieglitz@imtek.uni-freiburg.de
Natascha Thoma-Widmann
PR/Marketing Coordinator
Faculty of Engineering
University of Freiburg
Phone: +49 (0)761 / 203-8056
Mobile: +49 (0)171 / 7616720
E-Mail: thoma-widmann@tf.uni-freiburg.de

Prof. Dr. Thomas Stieglitz | University of Freiburg
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/lifehand2

More articles from Information Technology:

nachricht Micropatterning OLEDs using electron beam technology
27.04.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Quantum computing closer as RMIT drives towards first quantum data bus
18.04.2016 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>