Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prostheses with Sensory Feedback

06.02.2014
Freiburg researchers have developed electrodes that help amputees to grasp at objects

The patient Dennis Aabo Sorensen grasps at a mandarin orange with his artificial hand. Source: LifeHand2 Project


The patient Dennis Aabo Sorensen grasps at a mandarin orange with his artificial hand. Source: LifeHand2 Project

An artificial limb that enables amputees to grasp at an object and feel it as though they were using their real hand: Thanks to Freiburg microsystems engineer Prof. Dr. Thomas Stieglitz and the international research group participating in the project LifeHand2, this has now become a reality. The scientists present the findings of their project in the journal Science Translational Medicine.

Surgeons implanted two ultra-thin electrodes each directly into the ulnar and median nerves in the upper arm of Dennis Aabo Sørensen, a patient with an amputated lower arm. The electrodes send sensory data by means of electrical impulses from the patient’s artificial hand directly to his brain over the peripheral nervous system. They give him information about the shape and consistency of the objects he grasps at – even when he cannot see them.

The patient learned to control his artificial hand with only little prior training and more quickly than the scientists had thought possible. He managed to sense objects like a plastic cup, a mandarin orange, and a heavy block of wood while being blindfolded and to take hold of them with a precise grip and the right amount of force. The combination of technology and the patient’s biological system worked almost intuitively.

The electrodes were developed in Thomas Stieglitz’ laboratory, professor of Biomedical Microtechnology at the Department of Microsystems Engineering of the University of Freiburg. “Our research helps patients who have lost a limb to move their prostheses in a completely natural way. It is always a very special moment for me as an engineer to see technological developments be implemented successfully on a patient after many years in the lab,” said the researcher. As this was only an initial test, the electrodes will have to be removed after 30 days as per the European directive on medical devices. The team plans to conduct further studies on patients in Rome, Italy; Lausanne, Switzerland; and Aalborg, Denmark.

Six research institutions in Italy, Switzerland, and Germany are participating in the project LifeHand 2. Launched in 2008, the project originated from the European Union–funded project TIME and the Italian project NEMESIS. The clinical director of the study is Prof. Dr. Paolo Maria Rossini, and the operation was performed by Prof. Dr. Eduardo Marcos Fernandez. Both are from the Agostino Gemelli University Polyclinic in Rome. The project director is Prof. Dr. Silvestro Micera from the Swiss Federal Institute of Technology in Lausanne.


Original publication
S. Raspopovic, M. Capogrosso, F. M. Petrini, M. Bonizzato, J. Rigosa, G. D. Pino, J. Carpaneto, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C. M. Oddo, L. Citi, A. L. Ciancio, C. Cipriani, M. C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P. M. Rossini, S. Micera, Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci. Transl. Med. 6, 222ra19 (2014). http://stm.sciencemag.org/content/6/222/222ra19
Further information on Surprising Science:
www.pr.uni-freiburg.de/go/lifehand2
Film and photo material available on request.
Contact:
Prof. Dr. Thomas Stieglitz
Laboratory for Biomedical Microtechnology
Department of Microsystems Engineering (IMTEK)
Phone: +49 (0)761 / 203-7471
E-Mail: thomas.stieglitz@imtek.uni-freiburg.de
Natascha Thoma-Widmann
PR/Marketing Coordinator
Faculty of Engineering
University of Freiburg
Phone: +49 (0)761 / 203-8056
Mobile: +49 (0)171 / 7616720
E-Mail: thoma-widmann@tf.uni-freiburg.de

Prof. Dr. Thomas Stieglitz | University of Freiburg
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/lifehand2

More articles from Information Technology:

nachricht Satellite data for agriculture
28.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>