Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prostheses with Sensory Feedback

06.02.2014
Freiburg researchers have developed electrodes that help amputees to grasp at objects

The patient Dennis Aabo Sorensen grasps at a mandarin orange with his artificial hand. Source: LifeHand2 Project


The patient Dennis Aabo Sorensen grasps at a mandarin orange with his artificial hand. Source: LifeHand2 Project

An artificial limb that enables amputees to grasp at an object and feel it as though they were using their real hand: Thanks to Freiburg microsystems engineer Prof. Dr. Thomas Stieglitz and the international research group participating in the project LifeHand2, this has now become a reality. The scientists present the findings of their project in the journal Science Translational Medicine.

Surgeons implanted two ultra-thin electrodes each directly into the ulnar and median nerves in the upper arm of Dennis Aabo Sørensen, a patient with an amputated lower arm. The electrodes send sensory data by means of electrical impulses from the patient’s artificial hand directly to his brain over the peripheral nervous system. They give him information about the shape and consistency of the objects he grasps at – even when he cannot see them.

The patient learned to control his artificial hand with only little prior training and more quickly than the scientists had thought possible. He managed to sense objects like a plastic cup, a mandarin orange, and a heavy block of wood while being blindfolded and to take hold of them with a precise grip and the right amount of force. The combination of technology and the patient’s biological system worked almost intuitively.

The electrodes were developed in Thomas Stieglitz’ laboratory, professor of Biomedical Microtechnology at the Department of Microsystems Engineering of the University of Freiburg. “Our research helps patients who have lost a limb to move their prostheses in a completely natural way. It is always a very special moment for me as an engineer to see technological developments be implemented successfully on a patient after many years in the lab,” said the researcher. As this was only an initial test, the electrodes will have to be removed after 30 days as per the European directive on medical devices. The team plans to conduct further studies on patients in Rome, Italy; Lausanne, Switzerland; and Aalborg, Denmark.

Six research institutions in Italy, Switzerland, and Germany are participating in the project LifeHand 2. Launched in 2008, the project originated from the European Union–funded project TIME and the Italian project NEMESIS. The clinical director of the study is Prof. Dr. Paolo Maria Rossini, and the operation was performed by Prof. Dr. Eduardo Marcos Fernandez. Both are from the Agostino Gemelli University Polyclinic in Rome. The project director is Prof. Dr. Silvestro Micera from the Swiss Federal Institute of Technology in Lausanne.


Original publication
S. Raspopovic, M. Capogrosso, F. M. Petrini, M. Bonizzato, J. Rigosa, G. D. Pino, J. Carpaneto, M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C. M. Oddo, L. Citi, A. L. Ciancio, C. Cipriani, M. C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P. M. Rossini, S. Micera, Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses. Sci. Transl. Med. 6, 222ra19 (2014). http://stm.sciencemag.org/content/6/222/222ra19
Further information on Surprising Science:
www.pr.uni-freiburg.de/go/lifehand2
Film and photo material available on request.
Contact:
Prof. Dr. Thomas Stieglitz
Laboratory for Biomedical Microtechnology
Department of Microsystems Engineering (IMTEK)
Phone: +49 (0)761 / 203-7471
E-Mail: thomas.stieglitz@imtek.uni-freiburg.de
Natascha Thoma-Widmann
PR/Marketing Coordinator
Faculty of Engineering
University of Freiburg
Phone: +49 (0)761 / 203-8056
Mobile: +49 (0)171 / 7616720
E-Mail: thoma-widmann@tf.uni-freiburg.de

Prof. Dr. Thomas Stieglitz | University of Freiburg
Further information:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/go/lifehand2

More articles from Information Technology:

nachricht New technique controls autonomous vehicles on a dirt track
24.05.2016 | Georgia Institute of Technology

nachricht Engineers take first step toward flexible, wearable, tricorder-like device
24.05.2016 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Rutgers scientists help create world's largest coral gene database

24.05.2016 | Earth Sciences

New technique controls autonomous vehicles on a dirt track

24.05.2016 | Information Technology

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>