Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project Uses Cell Phones as Computers in the Classroom

10.02.2009
Educational software for cell phones, a suite of tools developed at the University of Michigan, is being used to turn smart phones into personal computers for students in two Texas classrooms.

Their Mobile Learning Environment includes programs that let students map concepts, animate their drawings, surf relevant parts of the Internet and integrate their lessons and assignments.

It also includes mini versions of Microsoft Word and Excel. It is currently licensed through Soloway's company GoKnow! to 40,000 users around the world for larger palm-sized computers. Cell phones change the game, though.

The software developers are Elliot Soloway, an Arthur F. Thurnau Professor in the department of Electrical Engineering and Computer Science, the School of Information, and the School of Education, and Cathleen Norris, a regents professor at the University of North Texas.

"This is the beginning of the future," Soloway said. "The future is mobile devices that are connected. They're going to be the new paper and pencil."

Cell phones can be powerful computers, Soloway says. They can do just about everything laptops can do for a fraction of the price. And many students are bringing them to school anyway.

Matt Cook, a fifth-grade teacher from Keller, Texas who started the pilot project, says the popularity of cell phones got him thinking about how to harness their power for teaching. About half of the students in his class had phones before the project started.

Cook was looking for an answer when he met Soloway at an education technology conference last year. He got Verizon Wireless involved to donate phone service. HTC Corp. is donating smart phones. Celio Corp. is donating screens for the phones. Microsoft is providing training.

The project equips 53 students in two fifth-grade classes at Trinity Meadows Intermediate School with a smart phone of their own to use around-the-clock for the rest of the school year. Students can't text message or make calls with them. But they can use the cameras, mp3 players, calendars, calculators and educational software. Cook handed out the phones in late January.

"The phones will be seamlessly integrated into my lessons," Cook said. "I think that right off the bat, this will add a level of student engagement. They'll be more interested in the lessons because we're talking in the students' language. Any time you can do that, you're a lot more likely to be heard."

He explained how the devices will change his lesson on physical and chemical weathering. He will take the students outside with sidewalk chalk and let them decorate the concrete. Normally, they would then go outside every day to watch the chalk fade over time. Now, students will take a photos of the sidewalk every day and use the Sketchy animation program to create a video of the fading process.

Soloway says this type of hands-on, reinforced learning is only possible when each student has his or her own device.

"People ask why every child needs a computer and why can't students just share," Soloway said. "Well, do you share pencils?"

The school district is examining several aspects of student learning with these devices. They'll determine whether listening to recordings of texts enhances at-risk students' reading comprehension. They are studying students' technological savvy before and after the project. The teachers involved will also teach responsible and appropriate use of these phones. Cook and school officials hope to expand the project next year.

For more information on Soloway, visit: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=861

Cell-phone-based, hand-held computers for education at Keller Intermediate School District: http://www.kellerisd.net/kellerisd/index.php?option=com_content&task=view&id=600&Itemid=921

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu
http://www.engin.umich.edu

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>