Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Online Social Networks May Know about Non-members

02.05.2012
Heidelberg researchers study automatic generation of so-called shadow profiles

What can social networks on the internet know about persons who are friends of members, but have no user profile of their own? Researchers from the Interdisciplinary Center for Scientific Computing of Heidelberg University studied this question.


Any social network platform divides society into members and non-members. Relationships between non-members whose e-mail contact has been revealed by a member (red lines) can be accurately inferred based on relationships between members (black lines) and their connection patterns to non-members (green lines).
Picture: Ágnes Horvát

Their work shows that through network analytical and machine learning tools the relationships between members and the connection patterns to non-members can be evaluated with regards to non-member relationships. Using simple contact data, it is possible, under certain conditions, to correctly predict that two non-members know each other with approx. 40 percent probability.

For several years scientists have been investigating what conclusions can be drawn from a computational analysis of input data by applying adequate learning and prediction algorithms. In a social network, information not disclosed by a member, such as sexual orientation or political preferences, can be “calculated” with a very high degree of accuracy if enough of his or her friends did provide such information about themselves. “Once confirmed friendships are known, predicting certain unknown properties is no longer that much of a challenge for machine learning”, says Prof. Dr. Fred Hamprecht, co-founder of the Heidelberg Collaboratory for Image Processing (HCI).

Until now, studies of this type were restricted to users of social networks, i.e. persons with a posted user profile who agreed to the given privacy terms. “Non-members, however, have no such agreement. We therefore studied their vulnerability to the automatic generation of so-called shadow profiles”, explains Prof. Dr. Katharina Zweig, who until recently worked at the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University.

In an online social network, it is possible to infer information about non-members, for instance by using so-called friend-finder applications. When new Facebook members register, they are asked to make available their full list of e-mail contacts, even of those people who are not Facebook members. “This very basic knowledge of who is acquainted with whom in the social network can be tied to information about who users know outside the network. In turn, this association can be used to deduce a substantial portion of relationships between non-members”, explains Ágnes Horvát, who conducts research at the IWR.

To make their calculations, the Heidelberg researchers used a standard procedure of machine learning based on network analytical structural properties. As the data needed for the study was not freely obtainable, the researchers worked with anonymised real-world Facebook friendship networks as a test set of basic data. The partitioning between members and non-members was simulated using a broad possible range of models. These partitions were used to validate the study results. Using standard computers the researchers were able to calculate in just a few days which non-members were most likely friends of each other.

The Heidelberg scientists were astonished that all the simulation methods produced the same qualitative result. “Based on realistic assumptions about the percentage of a population that are members of a social network and the probability with which they will upload their e-mail address books, the calculations enabled us to accurately predict 40 percent of the relationships between non-members.” According to Dr. Michael Hanselmann of the HCI, this represents a 20-fold improvement compared to simple guessing.

“Our investigation made clear the potential social networks have for inferring information about non-members. The results are also astonishing because they are based on mere contact data”, emphasises Prof. Hamprecht. Many social network platforms, however, have far more data about users, such as age, income, education, or where they live. Using this data, a corresponding technical infrastructure and other structural properties of network analysis, the researchers believe that the prediction accuracy could be significantly improved. “Overall our project illustrates that we as a society have to come to an understanding about the extent to which relational data about persons who did not provide their consent may be used”, says Prof. Zweig.

The results of the research were published in “PLoS ONE”.

Original publication:
Horvát E-Á, Hanselmann M, Hamprecht FA, Zweig KA (2012): One Plus One Makes Three (for Social Networks). PLoS ONE 7(4): e34740. doi:10.1371/journal.pone.0034740

Contact:
Prof. Dr. Fred Hamprecht
Heidelberg University
Interdisciplinary Center for Scientific Computing
Phone: +49 6221 54-8800
fred.hamprecht@iwr.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>