Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Technique Targets C Code to Spot, Contain Malware Attacks


Researchers from North Carolina State University have developed a new tool to detect and contain malware that attempts root exploits in Android devices. The tool improves on previous techniques by targeting code written in the C programming language – which is often used to create root exploit malware, whereas the bulk of Android applications are written in Java.

Root exploits take over the system administration functions of an operating system, such as Android. A successful Android root exploit effectively gives hackers unfettered control of a user’s smartphone.

The new security tool is called Practical Root Exploit Containment (PREC). It refines an existing technique called anomaly detection, which compares the behavior of a downloaded smartphone application (or app), such as Angry Birds, with a database of how the application should be expected to behave.

When deviations from normal behavior are detected, PREC analyzes them to determine if they are malware or harmless “false positives.” If PREC determines that an app is attempting root exploit, it effectively contains the malicious code and prevents it from being executed.

“Anomaly detection isn’t new, and it has a problematic history of reporting a lot of false positives,” says Dr. Will Enck, an assistant professor of computer science at NC State and co-author of a paper on the work. “What sets our approach apart is that we are focusing solely on C code, which is what most – if not all – Android root exploits are written in.”

“Taking this approach has significantly driven down the number of false positives,” says Dr. Helen Gu, an associate professor of computer science at NC State and co-author of the paper. “This reduces disturbances for users and makes anomaly detection more practical.”

The researchers are hoping to work with app vendors, such as Google Play, to establish a database of normal app behavior.

Most app vendors screen their products for malware, but malware programmers have developed techniques for avoiding detection – hiding the malware until users have downloaded the app and run it on their smartphones.

The NC State research team wants to take advantage of established vendor screening efforts to create a database of each app’s normal behavior. This could be done by having vendors incorporate PREC software into their app assessment processes. The software would take the app behavior data and create an external database, but would not otherwise affect the screening process.

“We have already implemented the PREC system and tested it on real Android devices,” Gu says. “We are now looking for industry partners to deploy PREC, so that we can protect Android users from root exploits.”

The paper, “PREC: Practical Root Exploit Containment for Android Devices,” will be presented at the Fourth ACM Conference on Data and Application Security and Privacy being held March 3-5 in San Antonio, Texas. Lead author of the paper is former NC State graduate student Tsung-Hsuan Ho. The paper was co-authored by Daniel Dean, a Ph.D. student in Gu’s lab at NC State.

The work was supported by the National Security Agency; U.S. Army Research Office grant W911NF-10-1-0273; National Science Foundation grants CNS-1149445, CNS-1253346, and CNS-1222680; IBM Faculty Awards and Google Research Awards.


Note to Editors: The paper abstract follows.

“PREC: Practical Root Exploit Containment for Android Devices”

Authors: Tsung-Hsuan Ho, Daniel J. Dean, Xiaohui Gu, and William Enck, North Carolina State University

Presented: March 3-5 at the Fourth ACM Conference on Data and Application Security and Privacy in San Antonio, Texas.

Abstract: Application markets such as the Google Play Store and the Apple App Store have become the de facto method of distributing software to mobile devices. While official markets dedicate significant resources to detecting malware, state-of-the-art malware detection can be easily circumvented using logic bombs or checks for an emulated environment. We present a Practical Root Exploit Containment (PREC) framework that protects users from such conditional malicious behavior. PREC can dynamically identify system calls from high-risk components (e.g., third-party native libraries) and execute those system calls within isolated threads. Hence, PREC can detect and stop root exploits with high accuracy while imposing low interference to benign applications. We have implemented PREC and evaluated our methodology on 140 most popular benign applications and 10 root exploit malicious applications. Our results show that PREC can successfully detect and stop all the tested malware while reducing the false alarm rates by more than one order of magnitude over traditional malware detection algorithms. PREC is light-weight, which makes it practical for runtime on-device root exploit detection and containment.

Matt Shipman | EurekAlert!

Further reports about: ACM Android Application Code Data Devices Google Malware Security Store state-of-the-art

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>