Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New proactive approach unveiled to malware in networked computers and data

04.06.2014

Cybercrime comes in all forms these days. One recent headline told of the creepware or silent computer snooping that resulted in the arrest of some 90 people in 19 countries. Miss Teen USA was among the victims. Her computer had been turned into a camera and used to spy on her in her own bedroom.

On the commercial front, Target suffered the largest retail hack in U.S. history during the Christmas shopping season of 2013, and now the Fortune 500 company's outlook is bleak with steep drops in profits.


Using a National Science CAREER Award grant, Virginia Tech College of Engineering Computer Scientist Daphne Yao and her colleagues have effectively shown how to isolate infected computer hosts and detect in advance stealthy malware also known as malicious software.

Credit: Virginia Tech

New research to be announced at the June 2014 ACM Symposium on Information, Computer and Communications Security http://asiaccs2014.nict.go.jp/ in Kyoto, Japan has unveiled the causal relations among computer network events. The work effectively isolates infected computer hosts and detects in advance stealthy malware also known as malicious software.

The work was conducted under the auspices of a 2010 National Science Foundation CAREER Award grant to develop software that differentiates human-user computer interaction from malware http://www.nsf.gov/awardsearch/showAward?AWD_ID=0953638&HistoricalAwards=false.

That $530,000 award was presented to Danfeng (Daphne) Yao, associate professor of computer science at Virginia Tech. She worked with Naren Ramakrishnan http://www.cs.vt.edu/user/ramakrishnan, the Thomas L. Phillips Professor of Engineering, and her graduate student Hao Zhang of Beijing, China, a doctoral candidate in computer science.

The Virginia Tech computer scientists used causal relations to determine whether or not network activities have justifiable and legitimate causes to occur.

"This type of semantic reasoning is new and very powerful," Yao said.

"The true significance of this security approach is its potential proactive defense capability. Conventional security systems scan for known attack patterns, which is reactive. Our anomaly detection based on enforcing benign properties in network traffic is a clear departure from that," Yao added.

They will present their paper "Detection of Stealthy Malware Activities with Traffic Causality and Scalable Triggering Relation Discovery" on June 4. It will be published in the symposium's proceedings.

Virginia Tech Intellectual Property has filed a patent on this technology, and it is actually a continuation-in-part patent, following one of Yao's earlier patents.

Previously, Yao garnered a 3-year, $450,000 grant from the Office of Naval Research (ONR) on cyber security to quantitatively detect anomalies in Department of Defense (DOD) computers, mobile devices, command and control servers, and embedded systems deployed on navy ships.

Yao's career research focus has been on this methodology development for novel, practical, and quantitative anomaly detection. Specifically, she is analyzing causal relations of events and producing instructions for detecting anomalies in computer programs, systems, and networks.

Lynn Nystrom | Eurek Alert!

More articles from Information Technology:

nachricht LAMA 2.0 accelerates more than just numerical applications
21.06.2016 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Researchers open hairy new chapter in 3-D printing
20.06.2016 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Plate tectonics without jerking

30.06.2016 | Earth Sciences

A protein coat helps chromosomes keep their distance

30.06.2016 | Life Sciences

Thousands on one chip: New Method to study Proteins

30.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>