Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite measures Debby's drenching Florida rains

29.06.2012
NASA's TRMM satellite provided data that allowed scientists to calculate Tropical Storm Debby's rainfall totals across Florida. The highest rainfall totals from June 20-27 topped 380 mm (~15 inches) in a wide patch of central Florida from around Titusville on the east coast.

Even though it never became more than a tropical storm, the residents of northern and central Florida will remember Debby. Debby, which formed as a tropical storm on the 23rd of June 2012 in the central Gulf of Mexico, took three full days to reach the Big Bend of Florida just 350 miles away.


Debby's highest rainfall totals from June 20-27 are in excess of 380 mm (~15 inches, shown in purple). The heaviest rains cover a wide patch of central Florida from around Titusville on the east coast to around Homosassa Springs on the west coast within which amounts exceed 260 mm (~10 inches, shown in orange) to over 380 mm in the center. Another band of heavy rain runs east-west across no.Florida from Jacksonville to near Tallahassee. The highest totals are around Lake City and exceed 380 mm. Credit: Credit: NASA/SSAI, Hal Pierce

Although the center didn't make landfall until around 5 p.m. EDT on the afternoon of June 26 when it crossed the coast near Steinhatchee, Florida, Debby's effects were felt well away from the center.

Most of the rain and weather associated with Debby were well to the north and east of the center over Florida, which was effectively inundated with rain squalls originating over the Gulf and wrapping around the eastern side of the storm for 3 days. The result was copious amounts of rain over the central and northern parts of the state in addition to an outbreak of tornadoes over central and southern Florida on June 24.

In addition to capturing detailed images of tropical storms, TRMM is ideally suited to measure rainfall from space. TRMM is a joint mission between NASA and the Japanese space agency JAXA.

For increased coverage, TRMM is used to calibrate rainfall estimates from other additional satellites. The TRMM-based, near-real time Multi-satellite Precipitation Analysis (TMPA) at the NASA Goddard Space Flight Center in Greenbelt, Md. is used to estimate rainfall over a wide portion of the globe. TMPA rainfall totals are shown here for the 7-day period June 20 to 27, 2012 over and around Florida.

TRMM data showed that the highest rainfall totals for the period are in excess of 380 mm (~15 inches). The heaviest rains cover a wide patch of central Florida from around Titusville on the east coast to around Homosassa Springs on the west coast within which amounts exceed 260 mm (~10 inches) to over 380 mm (~15 inches) in the center. Another band of heavy rain is oriented east-west across northern Florida from Jacksonville to near Tallahassee with similar amounts or rain.The highest totals in the band occur around Lake City and exceed 380 mm (~15 inches). This east-west band can be attributed to the interaction of Debby's counterclockwise circulation with the coast and a frontal boundary draped across southern Georgia in an east-west orientation.

After coming ashore, Debby was downgraded to a tropical depression as it crossed northern Florida.

At 5 p.m. EDT on June 27, Debby lost tropical characteristics and became a post-tropical cyclone over the Atlantic Ocean. At that time Debby had maximum sustained winds of 40 mph (65 kmh) and it was located about180 miles (295 km) east of St. Augustine, Fla., near 29.5 North and 78.3 West.

On Thursday, June 28, 2012 at 8 a.m. EDT, the National Hurricane Center noted that showers and thunderstorms associated with post-tropical storm Debby were about 175 miles west-northwest of Bermuda. The shower and thunderstorm activity increased today and the winds are between 15 and 20 mph.Post-tropical Storm Debby continues to move to the northeast and the National Hurricane Center noted that it has a 10 percent chance of re-generating.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>