Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite measures Debby's drenching Florida rains

29.06.2012
NASA's TRMM satellite provided data that allowed scientists to calculate Tropical Storm Debby's rainfall totals across Florida. The highest rainfall totals from June 20-27 topped 380 mm (~15 inches) in a wide patch of central Florida from around Titusville on the east coast.

Even though it never became more than a tropical storm, the residents of northern and central Florida will remember Debby. Debby, which formed as a tropical storm on the 23rd of June 2012 in the central Gulf of Mexico, took three full days to reach the Big Bend of Florida just 350 miles away.


Debby's highest rainfall totals from June 20-27 are in excess of 380 mm (~15 inches, shown in purple). The heaviest rains cover a wide patch of central Florida from around Titusville on the east coast to around Homosassa Springs on the west coast within which amounts exceed 260 mm (~10 inches, shown in orange) to over 380 mm in the center. Another band of heavy rain runs east-west across no.Florida from Jacksonville to near Tallahassee. The highest totals are around Lake City and exceed 380 mm. Credit: Credit: NASA/SSAI, Hal Pierce

Although the center didn't make landfall until around 5 p.m. EDT on the afternoon of June 26 when it crossed the coast near Steinhatchee, Florida, Debby's effects were felt well away from the center.

Most of the rain and weather associated with Debby were well to the north and east of the center over Florida, which was effectively inundated with rain squalls originating over the Gulf and wrapping around the eastern side of the storm for 3 days. The result was copious amounts of rain over the central and northern parts of the state in addition to an outbreak of tornadoes over central and southern Florida on June 24.

In addition to capturing detailed images of tropical storms, TRMM is ideally suited to measure rainfall from space. TRMM is a joint mission between NASA and the Japanese space agency JAXA.

For increased coverage, TRMM is used to calibrate rainfall estimates from other additional satellites. The TRMM-based, near-real time Multi-satellite Precipitation Analysis (TMPA) at the NASA Goddard Space Flight Center in Greenbelt, Md. is used to estimate rainfall over a wide portion of the globe. TMPA rainfall totals are shown here for the 7-day period June 20 to 27, 2012 over and around Florida.

TRMM data showed that the highest rainfall totals for the period are in excess of 380 mm (~15 inches). The heaviest rains cover a wide patch of central Florida from around Titusville on the east coast to around Homosassa Springs on the west coast within which amounts exceed 260 mm (~10 inches) to over 380 mm (~15 inches) in the center. Another band of heavy rain is oriented east-west across northern Florida from Jacksonville to near Tallahassee with similar amounts or rain.The highest totals in the band occur around Lake City and exceed 380 mm (~15 inches). This east-west band can be attributed to the interaction of Debby's counterclockwise circulation with the coast and a frontal boundary draped across southern Georgia in an east-west orientation.

After coming ashore, Debby was downgraded to a tropical depression as it crossed northern Florida.

At 5 p.m. EDT on June 27, Debby lost tropical characteristics and became a post-tropical cyclone over the Atlantic Ocean. At that time Debby had maximum sustained winds of 40 mph (65 kmh) and it was located about180 miles (295 km) east of St. Augustine, Fla., near 29.5 North and 78.3 West.

On Thursday, June 28, 2012 at 8 a.m. EDT, the National Hurricane Center noted that showers and thunderstorms associated with post-tropical storm Debby were about 175 miles west-northwest of Bermuda. The shower and thunderstorm activity increased today and the winds are between 15 and 20 mph.Post-tropical Storm Debby continues to move to the northeast and the National Hurricane Center noted that it has a 10 percent chance of re-generating.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Information Technology:

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

nachricht Brain-Computer Interface: What if computers could intuitively understand us
18.01.2017 | Technische Universität Berlin

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>