Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoplasmonics: Towards efficient light harvesting

07.01.2014
The control of light is vital to many applications, including imaging, communications, sensing, cancer treatment, and even welding processes for automobile parts.

Transformation optics is an emerging field that has revolutionized our understanding of how to control light by constituting an effectively curved electromagnetic space.

This revolutionary strategy not only revisits the fundamental physics of light-matter interactions, but also renders trivial the design of optical functions that may otherwise be difficult or virtually impossible, such as an "invisibility cloak," which could only previously be found in science fiction.

When compared with ray optics, the new transformation optics technique provides a picture that is equally intuitive, but that is much more accurate in its description of the wave nature of light by using the electric and magnetic field lines as its basis. Therefore, the validity of this method is not restricted to the macroscopic regime, but can also be extended to the subwavelength scale. In a recent review paper published by SCIENCE CHINA Information Sciences, Yu Luo and colleagues from Imperial College London illustrate how the general capabilities of the transformation optics technique can be used to treat the subwavelength fields that occur in plasmonic systems and review the latest developments in transformation optics as applied to nanophotonics.

In plasmonics, metallic structures with sharp corners can trap light into nanometric volumes, thus giving rise to strong near-field enhancements. This effect can be used to detect single molecules, generate high harmonic signals, and even improve absorption in photovoltaic devices. Further developments using these techniques need to be guided by accurate and versatile theoretical modeling. However, modeling of this type can be difficult, because various aspects associated with the sharp plasmonic structures can hinder provision of accurate and convenient solutions to the problem at hand. First, the size of the sharp metallic point structure is normally much smaller than that of the device overall, which makes it difficult to create meshes for numerical simulations. Second, the strong contrast in the dielectric functions at the metal-dielectric interfaces leads to slow convergence of the field expansions. Yu Luo and colleagues deploy the theory of transformation optics to circumvent these problems. Their idea is to transform a complex plasmonic system with little intrinsic geometrical symmetry into a canonical structure with translational or rotational symmetry, which is then relatively easy to study using conventional theory.

For example, two touching nanowires can be transformed into two flat metal surfaces that are separated by a gap, and a sharp metal edge can be related to a periodic array of metal slabs. Other structures that can be studied using transformation optics include pairs of metallic nanospheres, asymmetric core-shell structures and rough metal surfaces. In fact, using transformation optics techniques, we could reverse engineer the optical properties of complex plasmonic nanostructures and redesign these structures based on the requirements of the desired applications.

Practical issues with the realization of plasmonic devices, such as the effects of edge rounding at sharp boundaries on the local field enhancement and resonance properties, can also be considered theoretically using transformation optics and provide useful guidance for the fabrication of these devices. In particular, the necessary conditions are highlighted for both broadband light absorption effects and large field enhancements. Experimental evidence for phenomena that have been predicted by transformation optics has also been reviewed, indicating potential applications in biosensing and broadband solar photovoltaics. These studies demonstrate the accuracy and versatility of transformation optics methods and are expected to encourage more researchers to enter this field.

Corresponding author:

LUO Yu
y.luo09@imperial.ac.uk
See the article: Luo Y, Zhao R K, Fernandez-Dominguez A I, et al. Harvesting light with transformation optics. Sci China Inf Sci, 2013, 56(12): 120401(13).

http://info.scichina.com:8084/sciFe/EN/abstract/abstract512908.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

YAN Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Information Technology:

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

nachricht Smartphone case offers blood glucose monitoring on the go
08.12.2017 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>