Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoplasmonics: Towards efficient light harvesting

07.01.2014
The control of light is vital to many applications, including imaging, communications, sensing, cancer treatment, and even welding processes for automobile parts.

Transformation optics is an emerging field that has revolutionized our understanding of how to control light by constituting an effectively curved electromagnetic space.

This revolutionary strategy not only revisits the fundamental physics of light-matter interactions, but also renders trivial the design of optical functions that may otherwise be difficult or virtually impossible, such as an "invisibility cloak," which could only previously be found in science fiction.

When compared with ray optics, the new transformation optics technique provides a picture that is equally intuitive, but that is much more accurate in its description of the wave nature of light by using the electric and magnetic field lines as its basis. Therefore, the validity of this method is not restricted to the macroscopic regime, but can also be extended to the subwavelength scale. In a recent review paper published by SCIENCE CHINA Information Sciences, Yu Luo and colleagues from Imperial College London illustrate how the general capabilities of the transformation optics technique can be used to treat the subwavelength fields that occur in plasmonic systems and review the latest developments in transformation optics as applied to nanophotonics.

In plasmonics, metallic structures with sharp corners can trap light into nanometric volumes, thus giving rise to strong near-field enhancements. This effect can be used to detect single molecules, generate high harmonic signals, and even improve absorption in photovoltaic devices. Further developments using these techniques need to be guided by accurate and versatile theoretical modeling. However, modeling of this type can be difficult, because various aspects associated with the sharp plasmonic structures can hinder provision of accurate and convenient solutions to the problem at hand. First, the size of the sharp metallic point structure is normally much smaller than that of the device overall, which makes it difficult to create meshes for numerical simulations. Second, the strong contrast in the dielectric functions at the metal-dielectric interfaces leads to slow convergence of the field expansions. Yu Luo and colleagues deploy the theory of transformation optics to circumvent these problems. Their idea is to transform a complex plasmonic system with little intrinsic geometrical symmetry into a canonical structure with translational or rotational symmetry, which is then relatively easy to study using conventional theory.

For example, two touching nanowires can be transformed into two flat metal surfaces that are separated by a gap, and a sharp metal edge can be related to a periodic array of metal slabs. Other structures that can be studied using transformation optics include pairs of metallic nanospheres, asymmetric core-shell structures and rough metal surfaces. In fact, using transformation optics techniques, we could reverse engineer the optical properties of complex plasmonic nanostructures and redesign these structures based on the requirements of the desired applications.

Practical issues with the realization of plasmonic devices, such as the effects of edge rounding at sharp boundaries on the local field enhancement and resonance properties, can also be considered theoretically using transformation optics and provide useful guidance for the fabrication of these devices. In particular, the necessary conditions are highlighted for both broadband light absorption effects and large field enhancements. Experimental evidence for phenomena that have been predicted by transformation optics has also been reviewed, indicating potential applications in biosensing and broadband solar photovoltaics. These studies demonstrate the accuracy and versatility of transformation optics methods and are expected to encourage more researchers to enter this field.

Corresponding author:

LUO Yu
y.luo09@imperial.ac.uk
See the article: Luo Y, Zhao R K, Fernandez-Dominguez A I, et al. Harvesting light with transformation optics. Sci China Inf Sci, 2013, 56(12): 120401(13).

http://info.scichina.com:8084/sciFe/EN/abstract/abstract512908.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

YAN Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Information Technology:

nachricht Switchable DNA mini-machines store information
26.06.2017 | Emory Health Sciences

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>