Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-based RFID tags could replace bar codes

19.03.2010
Rice, Korean collaboration produces printable tag

Long lines at store checkouts could be history if a new technology created in part at Rice University comes to pass.

Rice researchers, in collaboration with a team led by Gyou-jin Cho at Sunchon National University in Korea, have come up with an inexpensive, printable transmitter that can be invisibly embedded in packaging. It would allow a customer to walk a cart full of groceries or other goods past a scanner on the way to the car; the scanner would read all items in the cart at once, total them up and charge the customer's account while adjusting the store's inventory.

More advanced versions could collect all the information about the contents of a store in an instant, letting a retailer know where every package is at any time.

The technology reported in the March issue of the journal IEEE Transactions on Electron Devices is based on a carbon-nanotube-infused ink for ink-jet printers first developed in the Rice lab of James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. The ink is used to make thin-film transistors, a key element in radio-frequency identification (RFID) tags that can be printed on paper or plastic.

"We are going to a society where RFID is a key player," said Cho, a professor of printed electronics engineering at Sunchon, who expects the technology to mature in five years. Cho and his team are developing the electronics as well as the roll-to-roll printing process that, he said, will bring the cost of printing the tags down to a penny apiece and make them ubiquitous.

RFID tags are almost everywhere already. The tiny electronic transmitters are used to identify and track products and farm animals. They're in passports, library books and devices that let drivers pass through tollbooths without digging for change.

The technology behind RFID goes back to the 1940s, when Léon Theremin, inventor of the self-named electronic music instrument heard in so many '50s science fiction and horror movies, came up with a spy tool for the Soviet Union that drew power from and retransmitted radio waves.

RFID itself came into being in the 1970s and has been widely adopted by the Department of Defense and industry to track shipping containers as they make their way around the world, among many other uses.

But RFID tags to date are largely silicon-based. Paper or plastic tags printed as part of a package would cut costs dramatically. Cho expects his roll-to-roll technique, which uses a gravure process rather than ink-jet printers, to replace the bar codes now festooned on just about everything you can buy.

Cho, Tour and their teams reported in the journal a three-step process to print one-bit tags, including the antenna, electrodes and dielectric layers, on plastic foil. Cho's lab is working on 16-bit tags that would hold a more practical amount of information and be printable on paper as well.

Cho came across Tour's inks while spending a sabbatical at Rice in 2005. "Professor Tour first recommended we use single-walled carbon nanotubes for printing thin-film transistors," Cho said.

Tour's lab continues to support the project in an advisory role and occasionally hosts Cho's students. Tour said Rice owns half of the patent, still pending, upon which all of the technology is based. "Gyou-jin has carried the brunt of this, and it's his sole project," Tour said. "We are advisers and we still send him the raw materials" -- the single-walled carbon nanotubes produced at Rice.

Printable RFIDs are practical because they're passive. The tags power up when hit by radio waves at the right frequency and return the information they contain. "If there's no power source, there's no lifetime limit. When they receive the RF signal, they emit," Tour said.

There are several hurdles to commercialization. First, the device must be reduced to the size of a bar code, about a third the size of the one reported in the paper, Tour said. Second, its range must increase.

"Right now, the emitter has to be pretty close to the tags, but it's getting farther all the time," he said. "The practical distance to have it ring up all the items in your shopping cart is a meter. But the ultimate would be to signal and get immediate response back from every item in your store – what's on the shelves, their dates, everything.

"At 300 meters, you're set – you have real-time information on every item in a warehouse. If something falls behind a shelf, you know about it. If a product is about to expire, you know to move it to the front – or to the bargain bin."

Tour allayed concerns about the fate of nanotubes in packaging. "The amount of nanotubes in an RFID tag is probably less than a picogram. That means you can produce one trillion of them from a gram of nanotubes – a miniscule amount. Our HiPco reactor produces a gram of nanotubes an hour, and that would be enough to handle every item in every Walmart.

"In fact, more nanotubes occur naturally in the environment, so it's not even fair to say the risk is minimal. It's infinitesimal."

Co-authors of the paper include Rice graduate student Ashley Leonard; Minhun Jung, Jinsoo Noh and Gwangyong Lee of Sunchon National University; and Jaeyoung Kim, Namsoo Lim, Chaemin Lim, Junseok Kim, Kyunghwan Jung and Hwiwon Kang of the Printed Electronics Research Center, Paru Corp., Sunchon, Korea.

Read the paper at: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5406115

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>