Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitor and Control severe drought with analysis of data from Chollian

08.08.2013
Research team developing a more accurate way to monitor and predict weather changes.

UNIST professor Jung Ho Im received a research grant in “Development of Space Core Technology” from the National Research Foundation of Korea (NRF Korea) last June.

Central Korea has been suffering from flooding while the southern part is complaining about hot and dry weather for the last couple of weeks. Weather patterns are no longer statistically predictable.

To mitigate this problem, professor Im’s research team is developing a more accurate way to monitor and predict future weather changes.

The UNIST research team “Intelligent Remote Sensing and Geospatial Information Systems (IRIS)” led by Prof. Im, took a big step toward developing technology for monitoring climate change, including drought projection using GIS modeling, and past climate data.

“We started to work on developing technology which is able to predict the present as well as future weather changes based on the modeling data collected from the satellite Chollian, also known as Communication, Ocean and Meteorological Satellite 1 (COM-1),” said Prof. Im.

With this technology, we are able to monitor the progress of the drought in meteorological, agricultural, and hydrological aspects and to set up the strategies and actions against those problems by combining past weather data and the data from monitoring.

Prof. Im started the research on developing the technology last year, and was selected in the Development of Space Core Technology Program last June. “Developing drought monitoring system and its application through Convergence modeling of multi satellite data.”

“Korea still needs to pay much closer attention to drought monitoring, prediction and its control. Research on these issues is not yet focused, but rather it is scattered around,” said Prof. Im. “This research will be a step stone for cultivating experts and constructing infrastructure to utilize the advanced data from the satellites.”

The IRIS research team also focuses on research topics including remote sensing, GIS modeling and artificial intelligence techniques to broaden and deepen our understanding of the Earth systems under climate variability and changes.

“We would like to expand the application of monitoring system based on remote sensing to managing water resource, agriculture, and forest resource and urban planning through this research,” said Prof. Im, showing his research plan. “We can protect human life by managing the information on climate changes of ecosystem, various disasters, water resource, and carbon circulations.”

There are a total 13 of students in the IRIS lab including 6 graduate, 5 undergraduate students and 1 researcher under the guidance of Prof. Im. “I’ve been interested in the area of drought monitoring using satellite data,” said a senior Seon Young Park from the School of Urban and Environmental Engineering. “I am so proud that our research could contribute to the prosperity of human.”

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://www.researchsea.com

Further reports about: Chollian GIS Korea Monitor Space monitoring system remote sensing satellite data water resource

More articles from Information Technology:

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>