Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping New Paths for a Stressed-Out Internet

14.09.2010
The San Diego Supercomputer Center and Cooperative Association for Internet Data Analysis (CAIDA) at the University of California, San Diego, in a collaboration with researchers from Universitat de Barcelona in Spain and the University of Cyprus, have created the first geometric “atlas” of the Internet as part of a project to prevent our most ubiquitous form of communication from collapsing within the next decade or so.

In a paper published this week in Nature Communications, CAIDA researcher Dmitri Krioukov, along with Marián Boguñá (Universitat de Barcelona) and Fragkiskos Papadopoulos (University of Cyprus), describe how they discovered a latent hyperbolic, or negatively curved, space hidden beneath the Internet’s topology, leading them to devise a method to create an Internet map using hyperbolic geometry. In their paper, Sustaining the Internet with Hyperbolic Mapping, the researchers say such a map would lead to a more robust Internet routing architecture because it simplifies path-finding throughout the network.

“We compare routing in the Internet today to using a hypothetical road atlas, which is really just a long encoded list of road intersections and connections that would require drivers to pore through each line to plot a course to their destination without using any geographical, or geometrical, information which helps us navigate through the space in real life,” said Krioukov, principal investigator of the project.

Now imagine that a road – or in the case of the Internet, a connection – is closed for some reason and there is no geographical atlas to plot a new course, just a long list of connections that need to be updated. “That is basically how routing in the Internet works today – it is based on a topographical map that does not take into account any geometric coordinates in any space,” said Krioukov, who with his colleagues at CAIDA have been managing a project called Archipelago, or Ark, that constantly monitors the topology of the Internet, or the structure of its interconnections.

Like many experts, however, Krioukov is concerned that existing Internet routing, which relies on only this topological information, is not really sustainable. “It is very complicated, inefficient, and difficult to scale to the rapidly growing size of the Internet, which is now accessed by more than a billion people each day. In fact, we are already seeing parts of the Internet become intermittently unreachable, sinking into so-called black holes, which is a clear sign of instability.”

Krioukov and his colleagues have developed an in-depth theory that uses hyperbolic geometry to describe a negatively curved shape of complex networks such as the Internet. This theory appears in paper Hyperbolic Geometry of Complex Networks, published by Physical Review E today. In their Nature Communications paper, the researchers employ this theory, Ark’s data, and statistical inference methods to build a geometric map of the Internet. They show that routing using such a map would be superior to the existing routing, which is based on pure topology.

Instead of perpetually accessing and rebuilding a reference list of all available network paths, each router in the Internet would know only its hyperbolic coordinates and the coordinates of its neighbors so it could route in the right direction, only relaying the information to its closest neighbor in that direction, according to the researchers. Known as “greedy routing”, this process would dramatically increase the overall efficiency and scalability of the Internet. “We believe that using such a routing architecture based on hyperbolic geometry will create the best possible levels of efficiency in terms of speed, accuracy, and resistance to damage,” said Krioukov.

However the researchers caution that actually implementing and deploying such a routing structure in the Internet might be as challenging, if not more challenging, than discovering its hidden space. “There are many technical and non-technical issues to be resolved before the Internet map that we found would be the map that the Internet uses,” said Krioukov.

The research was in part funded by the National Science Foundation, along with Spain’s Direcção Geral de Ensino Superior (DGES), Generalitat de Catalunya, and by Cisco Systems. The Internet mapping paper as published in Nature Communications can be found here. The Physical Review E paper can be found here.

Jan Zverina | Newswise Science News
Further information:
http://www.sdsc.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>