Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making memories: Practical quantum computing moves closer to reality

19.06.2013
Researchers at the University of Sydney and Dartmouth College have developed a new way to design quantum memory, bringing quantum computers a step closer to reality. The results will appear June 19 in the journal Nature Communications.

Quantum computing may revolutionize information processing, by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics. But figuring out how to engineer such a machine, including vital subsystems like quantum memory, remains elusive.

In the worldwide drive to build a useful quantum computer, the simple-sounding task of effectively preserving quantum information in a quantum memory is a major challenge. The same physics that makes quantum computers potentially powerful also makes them likely to experience errors, even when quantum information is just being stored idly in memory. Keeping quantum information "alive" for long periods, while remaining accessible to the computer, is a key problem.

The Sydney-Dartmouth team's results demonstrate a path to what is considered a holy grail in the research community: storing quantum states with high fidelity for exceptionally long times, even hours according to their calculations. Today, most quantum states survive for tiny fractions of a second.

"Our new approach allows us to simultaneously achieve very low error rates and very long storage times," said co-senior author Dr. Michael J. Biercuk, director of the Quantum Control Laboratory in the University of Sydney's School of Physics and ARC Centre for Engineered Quantum Systems. "But our work also addresses a vital practical issue – providing small access latencies, enabling on-demand retrieval with only a short time lag to extract stored information."

The team's new method is based on techniques to build in error resilience at the level of the quantum memory hardware, said Dartmouth Physics Professor Lorenza Viola, a co-senior author who is leading the quantum control theory effort and the Quantum Information Initiative at Dartmouth.

"We've now developed the quantum 'firmware' appropriate to control a practically useful quantum memory," added Biercuk. "But vitally, we've shown that with our approach a user may guarantee that error never grows beyond a certain level even after very long times, so long as certain constraints are met. The conditions we establish for the memory to function as advertised then inform system engineers how they can construct an efficient and effective quantum memory. Our method even incorporates a wide variety of realistic experimental imperfections."

The study was supported by the U.S. Army Research Office, National Science Foundation, Intelligence Advanced Research Projects Activity, and ARC Centre for Engineered Quantum Systems.

Broadcast studios Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

John Cramer | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Information Technology:

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Beyond the clouds: Networked clouds in a production setting
04.04.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>