Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making memories: Practical quantum computing moves closer to reality

Researchers at the University of Sydney and Dartmouth College have developed a new way to design quantum memory, bringing quantum computers a step closer to reality. The results will appear June 19 in the journal Nature Communications.

Quantum computing may revolutionize information processing, by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics. But figuring out how to engineer such a machine, including vital subsystems like quantum memory, remains elusive.

In the worldwide drive to build a useful quantum computer, the simple-sounding task of effectively preserving quantum information in a quantum memory is a major challenge. The same physics that makes quantum computers potentially powerful also makes them likely to experience errors, even when quantum information is just being stored idly in memory. Keeping quantum information "alive" for long periods, while remaining accessible to the computer, is a key problem.

The Sydney-Dartmouth team's results demonstrate a path to what is considered a holy grail in the research community: storing quantum states with high fidelity for exceptionally long times, even hours according to their calculations. Today, most quantum states survive for tiny fractions of a second.

"Our new approach allows us to simultaneously achieve very low error rates and very long storage times," said co-senior author Dr. Michael J. Biercuk, director of the Quantum Control Laboratory in the University of Sydney's School of Physics and ARC Centre for Engineered Quantum Systems. "But our work also addresses a vital practical issue – providing small access latencies, enabling on-demand retrieval with only a short time lag to extract stored information."

The team's new method is based on techniques to build in error resilience at the level of the quantum memory hardware, said Dartmouth Physics Professor Lorenza Viola, a co-senior author who is leading the quantum control theory effort and the Quantum Information Initiative at Dartmouth.

"We've now developed the quantum 'firmware' appropriate to control a practically useful quantum memory," added Biercuk. "But vitally, we've shown that with our approach a user may guarantee that error never grows beyond a certain level even after very long times, so long as certain constraints are met. The conditions we establish for the memory to function as advertised then inform system engineers how they can construct an efficient and effective quantum memory. Our method even incorporates a wide variety of realistic experimental imperfections."

The study was supported by the U.S. Army Research Office, National Science Foundation, Intelligence Advanced Research Projects Activity, and ARC Centre for Engineered Quantum Systems.

Broadcast studios Dartmouth has TV and radio studios available for interviews. For more information, visit:

John Cramer | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>