Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and heat boost memory capacity

14.02.2014
Adding carbon gives iron-platinum nanocrystals the ideal optical properties for heat-assisted magnetic recording

The disk drive in a computer works by using a magnetic field to change the physical properties of a tiny volume of a magnetically susceptible material. Current research aims to develop novel materials and technologies that can maximize storage capacity by focusing data into the smallest possible volume.

Now, Zhanhong Cen and co-workers at the A*STAR Data Storage Institute in Singapore have experimentally and theoretically investigated the properties of iron-Cplatinum (FePt) nanocrystals for use in ultrahigh-density magnetic recording media. They show that, as well as having the appropriate magnetic characteristics, the optical response of FePt is suitable for high-performance data-storage applications and that the use of pulses of laser light improves the magnetic recording process1.

"Decreasing the size of magnetic particles makes the magnetic information become thermally unstable due to an effect called superparamagnetism," explains Cen. "FePt nanoparticles are very promising, because for these nanoparticles, superparamagnetism is suppressed at room temperature."

But FePt nanoparticles also have a drawback - the magnetic field required for writing data is much higher than that produced by present disk drives. While the magnetic-field intensity necessary for a change of state could potentially be reduced by locally heating the material with a pulse of light - a process called heat-assisted magnetic recording, little was known about the optical response of FePt until now.

Cen and the team created thin-film samples using a process known as sputtering, which involves firing a beam of particles at a FePt alloy to release iron and platinum atoms. The atoms land on a glass substrate covered with a layer of magnesium oxide where they form crystals. The team sputtered carbon at the same time to form a single layer of FePt nanocrystals 15 nanometers in diameter and 9.1 nanometers tall embedded in a film of carbon.

For comparison, the team also created a nanocrystal sample without carbon and probed the refractive index and absorption of the two samples with both visible and near-infrared light. The researchers used these values in a computer model to simulate the performance of the material in a heat-assisted magnetic recording device. The sample doped with carbon came out on top.

"Our simulations show that introducing carbon into a FePt nanocomposite can improve optical performance," says Cen. "Ultimately, a FePt-carbon recording medium will perform better than current storage options, because it will use a smaller optical spot on the recording media and enable more energy-efficient writing and reading of data."

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Cen, Z. H., Xu, B. X., Hu, J. F., Li, J. M., Cher, K. M. et al. Optical property study of FePt-C nanocomposite thin film for heat-assisted magnetic recording. Optics Express 21, 9906¨C9914 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>