Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light and heat boost memory capacity

14.02.2014
Adding carbon gives iron-platinum nanocrystals the ideal optical properties for heat-assisted magnetic recording

The disk drive in a computer works by using a magnetic field to change the physical properties of a tiny volume of a magnetically susceptible material. Current research aims to develop novel materials and technologies that can maximize storage capacity by focusing data into the smallest possible volume.

Now, Zhanhong Cen and co-workers at the A*STAR Data Storage Institute in Singapore have experimentally and theoretically investigated the properties of iron-Cplatinum (FePt) nanocrystals for use in ultrahigh-density magnetic recording media. They show that, as well as having the appropriate magnetic characteristics, the optical response of FePt is suitable for high-performance data-storage applications and that the use of pulses of laser light improves the magnetic recording process1.

"Decreasing the size of magnetic particles makes the magnetic information become thermally unstable due to an effect called superparamagnetism," explains Cen. "FePt nanoparticles are very promising, because for these nanoparticles, superparamagnetism is suppressed at room temperature."

But FePt nanoparticles also have a drawback - the magnetic field required for writing data is much higher than that produced by present disk drives. While the magnetic-field intensity necessary for a change of state could potentially be reduced by locally heating the material with a pulse of light - a process called heat-assisted magnetic recording, little was known about the optical response of FePt until now.

Cen and the team created thin-film samples using a process known as sputtering, which involves firing a beam of particles at a FePt alloy to release iron and platinum atoms. The atoms land on a glass substrate covered with a layer of magnesium oxide where they form crystals. The team sputtered carbon at the same time to form a single layer of FePt nanocrystals 15 nanometers in diameter and 9.1 nanometers tall embedded in a film of carbon.

For comparison, the team also created a nanocrystal sample without carbon and probed the refractive index and absorption of the two samples with both visible and near-infrared light. The researchers used these values in a computer model to simulate the performance of the material in a heat-assisted magnetic recording device. The sample doped with carbon came out on top.

"Our simulations show that introducing carbon into a FePt nanocomposite can improve optical performance," says Cen. "Ultimately, a FePt-carbon recording medium will perform better than current storage options, because it will use a smaller optical spot on the recording media and enable more energy-efficient writing and reading of data."

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Cen, Z. H., Xu, B. X., Hu, J. F., Li, J. M., Cher, K. M. et al. Optical property study of FePt-C nanocomposite thin film for heat-assisted magnetic recording. Optics Express 21, 9906¨C9914 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes
31.05.2016 | Universität Basel

nachricht New technique controls autonomous vehicles on a dirt track
24.05.2016 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>