Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ka-Boom!!!

11.03.2009
Retired mass-transit bus bombed to smithereens to test forensics camera

Lights, Camera, Ka-Boom!

Cheap, lightweight cameras could help protect mass transit, but would they survive a big costly blast?

That was the question on the minds of Department of Homeland Security Science and Technology Directorate (S&T) scientists and managers watching from behind three feet of reinforced concrete.

"30 seconds…" came the countdown voice in an adjacent room.

Outside was an old public bus, rigged with explosives; a series of baseball-sized video cameras mounted to its walls. Could the images on their memory chips be salvaged by computer engineers? Would they be clear enough to identify the bomber? In this case, of course, the latter question wasn't much of a mystery.

At the Aberdeen Proving Ground in Maryland, every Army vehicle with wheels or tracks had been tested since World War II, and that's where S&T's Homeland Security Advanced Research Projects Agency (HSARPA) was to witness the test bombing.

S&T's Stephen Dennis explains the idea: DHS wants to develop cameras with memory chips sturdy enough to withstand bombing attacks, fires or floods, but inexpensive enough to use in places where a complete surveillance system wasn't workable.

DHS's target price for the cameras was between $150 and $200 a piece, he said.

"These cameras would be used as a means of forensic analysis," said Dennis. They would not transmit or collect personal information, and would be tamper-proof to prevent someone from ripping one off a wall and, say, posting the images on YouTube. Video from the cameras would be recovered and used by law enforcement only after an incident.

Inside the shelter, the scientists watched a wall of flat screens hooked up to high-speed cameras that ringed the bombing range outside. This was just one test with one bus, representing just one kind of dangerous threat.

"The idea is that the cameras are robust enough to survive the blast from a suicide bomber," said Dennis.

There had been some talk about what kind of damage the explosive representing this suicide bomber could do. Would it pop the ceiling open like a tin can? Would it split the bus in half?

"3, 2, 1! Boom!!"

Even behind a giant steel plate, the walls of the shelter shuddered. The screens flashed red, and filled with smoky plumes.

Once the smoke cleared and flying debris settled, the group watched workmen as they plugged the ground with colored flags wherever they spotted one of the small cameras. A metal strip from the bus's shell lay across tree branches a hundred yards away.

"There wasn't much left of the bus except the wheels and chassis. But the cameras survived, and that was the point."

Did the cameras' memory chips survive the blast intact? Fourteen out of 16 did. In our next newsnote, analysis of those suvivors will be described.

John Verrico | EurekAlert!
Further information:
http://www.dhs.gov

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>