Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jointly utilizing LTE networks

02.02.2012
Mobile World Congress in Barcelona

Data-intensive Internet applications on smartphones, tablets and laptops are more popular than ever before. The result: Traffic on the mobile network is increasing at a blinding speed. Intelligent technologies are intended to increase the data rates on the new LTE network. The solution is to use the mobile networks jointly.


Intelligent algorithms permit decentralized control of the distribution of radio frequencies in LTE networks. © Fraunhofer HHI

Smartphones and tablets are some of the big sellers of the past year. Mobile Internet usage has increased rapidly with the sales success: according to a study of the industry association VATM, in 2011 the average data volume per mobile Internet user increased by 82 percent in Germany. In contrast to its predecessor UMTS, with the new LTE mobile radio standard, the clearly higher data rates and the shorter signal transmission times, providers want to cover the expected traffic. That is why the expansion of the LTE network is being pursued aggressively. Providers are setting up ever more base stations to prevent data bottlenecks, because with each new sending and receiving station increases network capacity. Basically, a network can be densified as much as desired. Neighboring base stations often use the same frequencies, and networks can cope with the resulting interference between the cell towers. However, this also means setting up ever more mobile radio antennas, which drives up costs and takes a great deal of time.

Researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute HHI in Berlin have developed new solutions to meet the growing requirements. The idea: two or more providers use the network jointly, meaning they are sharing the frequencies and the infrastructure. “This way, for example, customers of network provider A in Bavaria could use the base stations of network provider B in Brandenburg and vice versa,“ says Dr. Volker Jungnickel of HHI. LTE Spectrum Sharing, as the experts call their technology, offers providers many advantages beyond cost savings. They can close coverage gaps and make LTE available more quickly in rural areas.

“In the city, by combining the functions, they can double the density of the base stations and thus the capacity of both networks. The data rate per surface area increases, and more users are provided with service at the same time without having to erect new antennas. The end user profits from shorter downloading and uploading times,“ the researcher explains. On top of that, short-term peak loads can be absorbed reciprocally: if one network is under particular stress, one network partner can increase its bandwidth by borrowing frequency shares from another network partner. Because frequencies can be divided up dependent not only of load but also of channel, if the reception is bad in one‘s own network, one can simply use the spectrum of the partner network.

LTE spectrum sharing is made possible by intelligent algorithms that control the allocation of the radio frequencies in a decentralized way. For this to happen, certain information, such as the traffic load, the quality of the channel, and which services are being used at the moment is exchanged between providers. “With our technology, networks can coordinate to provide access to additional radio resources in the network of the partner. With the aid of fixed rules, we can distribute signal processing across networks, so no central control is required,“ Jungnickel points out. The researchers will be on hand to demonstrate how this works, live and in real-time, at the Mobile World Congress in Barcelona from February 27 - March 1, 2012 in Hall 2, Booth E41.

Dr. rer. nat. Volker Jungnickel | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/february/jointly-utilizing-ltenetworks.html

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>