Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jointly utilizing LTE networks

02.02.2012
Mobile World Congress in Barcelona

Data-intensive Internet applications on smartphones, tablets and laptops are more popular than ever before. The result: Traffic on the mobile network is increasing at a blinding speed. Intelligent technologies are intended to increase the data rates on the new LTE network. The solution is to use the mobile networks jointly.


Intelligent algorithms permit decentralized control of the distribution of radio frequencies in LTE networks. © Fraunhofer HHI

Smartphones and tablets are some of the big sellers of the past year. Mobile Internet usage has increased rapidly with the sales success: according to a study of the industry association VATM, in 2011 the average data volume per mobile Internet user increased by 82 percent in Germany. In contrast to its predecessor UMTS, with the new LTE mobile radio standard, the clearly higher data rates and the shorter signal transmission times, providers want to cover the expected traffic. That is why the expansion of the LTE network is being pursued aggressively. Providers are setting up ever more base stations to prevent data bottlenecks, because with each new sending and receiving station increases network capacity. Basically, a network can be densified as much as desired. Neighboring base stations often use the same frequencies, and networks can cope with the resulting interference between the cell towers. However, this also means setting up ever more mobile radio antennas, which drives up costs and takes a great deal of time.

Researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute HHI in Berlin have developed new solutions to meet the growing requirements. The idea: two or more providers use the network jointly, meaning they are sharing the frequencies and the infrastructure. “This way, for example, customers of network provider A in Bavaria could use the base stations of network provider B in Brandenburg and vice versa,“ says Dr. Volker Jungnickel of HHI. LTE Spectrum Sharing, as the experts call their technology, offers providers many advantages beyond cost savings. They can close coverage gaps and make LTE available more quickly in rural areas.

“In the city, by combining the functions, they can double the density of the base stations and thus the capacity of both networks. The data rate per surface area increases, and more users are provided with service at the same time without having to erect new antennas. The end user profits from shorter downloading and uploading times,“ the researcher explains. On top of that, short-term peak loads can be absorbed reciprocally: if one network is under particular stress, one network partner can increase its bandwidth by borrowing frequency shares from another network partner. Because frequencies can be divided up dependent not only of load but also of channel, if the reception is bad in one‘s own network, one can simply use the spectrum of the partner network.

LTE spectrum sharing is made possible by intelligent algorithms that control the allocation of the radio frequencies in a decentralized way. For this to happen, certain information, such as the traffic load, the quality of the channel, and which services are being used at the moment is exchanged between providers. “With our technology, networks can coordinate to provide access to additional radio resources in the network of the partner. With the aid of fixed rules, we can distribute signal processing across networks, so no central control is required,“ Jungnickel points out. The researchers will be on hand to demonstrate how this works, live and in real-time, at the Mobile World Congress in Barcelona from February 27 - March 1, 2012 in Hall 2, Booth E41.

Dr. rer. nat. Volker Jungnickel | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/february/jointly-utilizing-ltenetworks.html

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>