Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joining up memory

23.01.2014
Innovative electrodes allow new computer memory technologies to be compatible with existing circuitry

The computing industry faces constant demands to provide faster access to data and reduce power consumption. As current memory systems cannot meet these demands indefinitely, it is essential to develop entirely new technologies.

One strong contender is resistive random access memory (RRAM), which stores binary information by switching a dielectric material between conducting and non-conducting states.

A seamless transition to this new technology requires that RRAM memory cells be compatible with existing electronics, which are usually based on complementary metal oxide semiconductors (CMOS). Now, Xin Peng Wang and co-workers at the A*STAR Institute of Microelectronics, Singapore, have designed nickel-based electrodes that can couple RRAM to CMOS systems as well as reduce the current required to switch the RRAM between memory states1.

“One of the current most dominant memory systems, NAND flash, is expected to reach the limit of its scalability in 2017 or 2018,” says Wang. “We need to identify emerging non-volatile memory systems with higher densities, to make up the market. Recently, RRAM has attracted lots of attention due to its fast programming and erasing speeds, high endurance and good retention of data.”

Preventing neighboring RRAM cells from interfering with one another requires each cell to contain a selector made from a diode or transistor. Diode selectors have proved difficult to implement, therefore Wang and co-workers aimed to make RRAM stacks that were compatible with CMOS transistors.

To build the prototype RRAM cells, the researchers used three layers. They used physical vapor deposition to create a bottom electrode of nickel silicide or nickel germanosilicide, before adding a central dielectric switching layer of hafnium oxide, and a final top electrode of titanium nitride.

The researchers found that they could quickly and reliably switch the memory state of their cells, using very low operating currents. They suggest that the switching is enhanced by oxidation and reduction of nickel at the interfacial layer between the electrode and the dielectric. By providing more mobile oxygen species, these reactions might accelerate the formation and rupture of conductive filaments.

“Our electrodes can be easily formed on the source or drain terminal of a transistor,” says Wang. “In fact, our design effectively uses a CMOS transistor source or drain directly as the bottom electrode in a RRAM cell. This can lower the total cost and improve the scalability.”

In future, Wang and co-workers hope to shrink their nickel-based RRAM cells to a practical circuit scale to bring this promising technology into production.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Wang, X. P., Fang, Z., Chen, Z. X., Kamath, A. R., Tang, L. J. et al. Ni-containing electrodes for compact integration of resistive random access memory with CMOS. IEEE Electron Device Letters 34, 508–510 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>