Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech Announces Plans for New Manycore Computing Research Center

20.11.2008
The Georgia Institute of Technology, a national leader in high-performance computing research and education, announced plans for the creation of the Georgia Tech Center for Manycore Computing, a research center for innovations in computer architecture.

A collaborative effort between the Georgia Tech Colleges of Computing and Engineering, the Center for Manycore Computing (CMC) will address deep, foundational challenges in programming, design and systems development to overcome power and architecture barriers to the progression of computer performance.

“Our mission at the Center for Manycore Computing is to establish a research agenda that looks well-beyond the short-term and develops innovative and applicable solutions to future limitations on computing progress,” said Tom Conte, professor and director of the planned Georgia Tech Center for Manycore Computing. “By projecting out decades, we can better ensure sustained growth in the power, speed and capabilities of technologies that drive worldwide social and economic growth.”

Under the premise of Moore’s Law, the number of transistors able to be placed on an integrated circuit doubles every two years – yielding an exponential increase in the speed, power and memory of computing technologies over time. While computer architects and engineers continue to chart computing progress against Moore’s Law, power and design limitations threaten the ability of the technology industry to sustain its momentum. One solution to such challenges is the “manycore approach” – creating a chip composed of hundreds to thousands of light-weight core processors operating in parallel to advance the processing of ever higher-data, higher-power operations and applications.

Manycore computing will enable computing functions that are impossible today. For example, in the emerging field of mobile robotics, manycore computing would allow exponentially enhanced functionality of the robot, leading to its ability to better assess, react to and manipulate its surroundings. Other prime areas for manycore application include embedded computing, data search and analysis, and gaming/multimedia, among others.

“Georgia Tech’s deep domain expertise at all levels of the computing spectrum – from applications and architecture down to circuits and silicon – position the Institute as a natural leader in the emerging research area of manycore computing,” said Dr. Mark Allen, senior vice provost for Research and Innovation at Georgia Tech. “The interdisciplinary environment fostered by the College of Computing’s School of Computer Science and the College of Engineering’s School of Electrical and Computer Engineering enable our world-class researchers and faculty to revolutionize the field of computer architecture and how it is analyzed, taught and studied.”

As part of its mission, the CMC will also look at new ways to incorporate parallel programming and advanced architectures into its core undergraduate computing classes. By teaching today’s students to “think in parallel” at an earlier age, tomorrow’s leaders will be better able to develop the advancements needed to maintain the exponential growth rate for computing performance for decades to come.

Stefany Wilson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>