Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech Announces Plans for New Manycore Computing Research Center

20.11.2008
The Georgia Institute of Technology, a national leader in high-performance computing research and education, announced plans for the creation of the Georgia Tech Center for Manycore Computing, a research center for innovations in computer architecture.

A collaborative effort between the Georgia Tech Colleges of Computing and Engineering, the Center for Manycore Computing (CMC) will address deep, foundational challenges in programming, design and systems development to overcome power and architecture barriers to the progression of computer performance.

“Our mission at the Center for Manycore Computing is to establish a research agenda that looks well-beyond the short-term and develops innovative and applicable solutions to future limitations on computing progress,” said Tom Conte, professor and director of the planned Georgia Tech Center for Manycore Computing. “By projecting out decades, we can better ensure sustained growth in the power, speed and capabilities of technologies that drive worldwide social and economic growth.”

Under the premise of Moore’s Law, the number of transistors able to be placed on an integrated circuit doubles every two years – yielding an exponential increase in the speed, power and memory of computing technologies over time. While computer architects and engineers continue to chart computing progress against Moore’s Law, power and design limitations threaten the ability of the technology industry to sustain its momentum. One solution to such challenges is the “manycore approach” – creating a chip composed of hundreds to thousands of light-weight core processors operating in parallel to advance the processing of ever higher-data, higher-power operations and applications.

Manycore computing will enable computing functions that are impossible today. For example, in the emerging field of mobile robotics, manycore computing would allow exponentially enhanced functionality of the robot, leading to its ability to better assess, react to and manipulate its surroundings. Other prime areas for manycore application include embedded computing, data search and analysis, and gaming/multimedia, among others.

“Georgia Tech’s deep domain expertise at all levels of the computing spectrum – from applications and architecture down to circuits and silicon – position the Institute as a natural leader in the emerging research area of manycore computing,” said Dr. Mark Allen, senior vice provost for Research and Innovation at Georgia Tech. “The interdisciplinary environment fostered by the College of Computing’s School of Computer Science and the College of Engineering’s School of Electrical and Computer Engineering enable our world-class researchers and faculty to revolutionize the field of computer architecture and how it is analyzed, taught and studied.”

As part of its mission, the CMC will also look at new ways to incorporate parallel programming and advanced architectures into its core undergraduate computing classes. By teaching today’s students to “think in parallel” at an earlier age, tomorrow’s leaders will be better able to develop the advancements needed to maintain the exponential growth rate for computing performance for decades to come.

Stefany Wilson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>