Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech Announces Plans for New Manycore Computing Research Center

20.11.2008
The Georgia Institute of Technology, a national leader in high-performance computing research and education, announced plans for the creation of the Georgia Tech Center for Manycore Computing, a research center for innovations in computer architecture.

A collaborative effort between the Georgia Tech Colleges of Computing and Engineering, the Center for Manycore Computing (CMC) will address deep, foundational challenges in programming, design and systems development to overcome power and architecture barriers to the progression of computer performance.

“Our mission at the Center for Manycore Computing is to establish a research agenda that looks well-beyond the short-term and develops innovative and applicable solutions to future limitations on computing progress,” said Tom Conte, professor and director of the planned Georgia Tech Center for Manycore Computing. “By projecting out decades, we can better ensure sustained growth in the power, speed and capabilities of technologies that drive worldwide social and economic growth.”

Under the premise of Moore’s Law, the number of transistors able to be placed on an integrated circuit doubles every two years – yielding an exponential increase in the speed, power and memory of computing technologies over time. While computer architects and engineers continue to chart computing progress against Moore’s Law, power and design limitations threaten the ability of the technology industry to sustain its momentum. One solution to such challenges is the “manycore approach” – creating a chip composed of hundreds to thousands of light-weight core processors operating in parallel to advance the processing of ever higher-data, higher-power operations and applications.

Manycore computing will enable computing functions that are impossible today. For example, in the emerging field of mobile robotics, manycore computing would allow exponentially enhanced functionality of the robot, leading to its ability to better assess, react to and manipulate its surroundings. Other prime areas for manycore application include embedded computing, data search and analysis, and gaming/multimedia, among others.

“Georgia Tech’s deep domain expertise at all levels of the computing spectrum – from applications and architecture down to circuits and silicon – position the Institute as a natural leader in the emerging research area of manycore computing,” said Dr. Mark Allen, senior vice provost for Research and Innovation at Georgia Tech. “The interdisciplinary environment fostered by the College of Computing’s School of Computer Science and the College of Engineering’s School of Electrical and Computer Engineering enable our world-class researchers and faculty to revolutionize the field of computer architecture and how it is analyzed, taught and studied.”

As part of its mission, the CMC will also look at new ways to incorporate parallel programming and advanced architectures into its core undergraduate computing classes. By teaching today’s students to “think in parallel” at an earlier age, tomorrow’s leaders will be better able to develop the advancements needed to maintain the exponential growth rate for computing performance for decades to come.

Stefany Wilson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>