Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better and faster search engines

02.06.2009
Internet search engines virtually always create a ranking of all pages, and then they choose only those pages that contain the right words. In his doctoral dissertation, Ola Ågren, Umeå University in Sweden, describes a new approach that yields more relevant hits and faster search engines.

The goal of all search engines is to attain the most relevant responses as quickly as possible. When search engines calculate their search results, they are steered by an algorithm that assigns higher or lower values to features of Web pages. The most common search engines on the Net, such as Google, generate a gigantic single ranking based on a search of all pages available on the Net.

The algorithm that Ola Ågren has developed ranks pages, instead, on the basis of each relevant starting page, and includes pages that are directly or indirectly linked to by the starting page. Then a normalised mean value of the relevance of the various pages is calculated. A page that has links to it from several different pages is therefore assigned a higher value than those that are found only once. In this way it is faster to find pages of interest. For ordinary standard algorithms it takes more than seven days to go through and rank Web pages in a certain database. Using his algorithm, Ola Ågren has managed to do this in 158 seconds.

What's more, his algorithm has proven to yield the most relevant responses. He studied the relevance of hits in the top ten lists for three different algorithms: the one he developed and two variants of PageRank, the algorithm used by Google. He examined a total of 100 different expressions for all Nordic languages and English, including the expression master of engineering science (civlingeniör in Swedish). The top ten lists always had some form of overlapping between the different algorithms, but they were never completely identical. Users were then asked to judge the relevance of the various hits, without knowing which search engines had generated the alternative responses.

"The users in the study found that the search engine I developed is better than the others in more than 60 percent of cases," says Ola Ågren.

Besides search engines, the dissertation is also about methods for finding structures in huge masses of information, such as keywords and methods for extracting free text, such as parts of the documentation from the source code.

Dissertation title: Finding, Extracting and Exploiting Structure in Text and Hypertext.

For further information, please contact: Ola Ågren, Department of Computing Science; Cell phone: +46 (0)730-283852; E-mail: ola.agren@cs.umu.se

Pressofficer Karin Wikman, karin.wikman@adm.umu.se or +46-70 6100805

Karin Wikman | idw
Further information:
http://www.vr.se
http://umu.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:214648

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>