Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fast Quantum Computer Building Block Created

The fastest quantum computer bit that exploits the main advantage of the qubit over the conventional bit has been demonstrated by researchers at University of Michigan, U.S. Naval Research Laboratory and the University of California at San Diego.

The fastest quantum computer bit that exploits the main advantage of the qubit over the conventional bit has been demonstrated by researchers at University of Michigan, U.S. Naval Research Laboratory and the University of California at San Diego.

The scientists used lasers to create an initialized quantum state of this solid-state qubit at rates of about a gigahertz, or a billion times per second. They can also use lasers to achieve fundamental steps toward programming it.

A conventional bit can be a 0 or a 1. A quantum bit, or qubit, can be both at the same time. Until now, scientists couldn't stabilize that duality.

Physics professor Duncan Steel, doctoral student Xiaodong Xu and their colleagues used lasers to coherently, or stably, trap the spin of one electron confined in a single semiconductor quantum dot. A quantum dot is like a transistor in a conventional computer.

The scientists trapped the spin in a dark state in which they can arbitrarily adjust the amount of 0 and 1 the qubit represents. They call this state "dark" because it does not absorb light. Therefore, light does not cause loss of coherence between the two states. In other words, the light does not destabilize the qubit. A paper on these findings will be published in Nature Physics and is available early in the online edition.

"We are the first to show that you can do this to a single electron in a self-assembled quantum dot," Steel said. "If you're going to do quantum computing, you have to be able to work with one electron at a time."

Spin is an intrinsic property of the electron that isn't a real rotation. Steel compares it to the magnetic poles. Electrons are said to have spin up or down. In quantum computing, the up and down directions represent the 0s and 1s of conventional computing.

Steel's approach to developing a quantum computer is to use ultrafast lasers to manipulate arrays of semiconductor quantum dots, each containing one electron. Quantum logic gates are formed by quantum mechanical interactions between the dots.

Previously in Steel's lab, researchers have used a laser to produce an electron in a state representative of a 1 or a 0 and a small amount of the other state. Now, using two laser frequencies, they have trapped it as a 0 and a 1 at the same time, and they can adjust the amount of each.

Because the electron is trapped in a dark state, applied light can't destroy the coherence. Energy from light can flip the spin of electrons, or quantum bits, which would jumble any information being stored in the bit.

"This dark state is a place where information can be stored without any error," Steel said.

Because of their ability to represent multiple states simultaneously, quantum computers could theoretically factor numbers dramatically faster and with smaller computers than conventional computers. For this reason, they could vastly improve computer security.

"The National Security Agency has said that based on our present technology, we have about a 20-year window of security," Steel said. "That means if we sent up a satellite today, it would take somebody about 20 years to crack the code. Quantum computers will let you develop a code that would be impossible to crack with a conventional computer."

Physicists achieved this by using two continuous wave lasers.

Steel is the Robert J. Hiller Professor of Engineering in the Department of Electrical Engineering and Computer Science as well as a professor in the Physics Department. Xu, a doctoral student in Physics, is first author of the Nature Physics paper. Steel is also an author. The principal investigators include Dan Gammon of the Naval Research Laboratory and physics professor Lu Jeu Sham at the University of California at San Diego.

The paper is called "Coherent Population Trapping of an Electron Spin in a Single Negatively Charged Quantum Dot." It is available online at

For more information:
Duncan Steel:
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of the largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Find out more at

Nicole Casal Moore | Newswise Science News
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>