Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Autopilot System Could Help Prevent Accidents Like 2009 Air France 447 Crash

03.04.2014

Research by Rensselaer Polytechnic Institute Professor Carlos Varela Develops “Active Data” System

Thirty lines of computer code might have saved Air France flight 447, and 228 passengers and crew aboard, from plunging into the Atlantic Ocean on June 1, 2009, according to new research by Carlos Varela, an associate professor of computer science at Rensselaer Polytechnic Institute. Varela and his research group have developed a computer system that detects and corrects faulty airspeed readings, such as those that contributed to the AF447 crash. Their approach to detecting errors could be applicable in many systems that rely on sensor readings.


GNU Free Documentation License Copyright © 2007 David Monniaux

Pitot tube from an Airbus A380.

“During this flight, important sensors failed, and reported erroneous data. But the autopilot didn’t know that, and it acted as if the data were correct,” said Varela. “We have computers that can beat the best human Jeopardy! players, and yet we rely on these relatively weak autopilot systems to safeguard hundreds of people on each flight. Why don’t we add more intelligence to autopilot systems?”

Varela’s research, aimed at developing “active data,” was funded by the Air Force Office of Scientific Research under the Dynamic Data Driven Application Systems (DDDAS) program. The goal of the grant is to develop mathematical and programming elements that enable otherwise passive data systems to search for patterns and relationships, and discover knowledge in data streams. Varela, who is himself a pilot, recognized that robust “active data” systems could have prevented the crash of flight AF447. Shigeru Imai, a computer science graduate student, originally presented their research and results at the 2nd International Conference Big Data Science and Engineering in December 2013.

AF447 crashed into the Atlantic Ocean more than 400 miles off Brazil’s northeastern coast. When recovered, the “black box” flight recorders revealed a chain of events beginning with erroneous readings from the pitot tubes – instruments that use air pressure to calculate airspeed. The pitot tubes, presumably blocked by ice, reported a drop in airspeed from 461 to 182 knots. The autopilot, unaware of the error, lowered the nose of the airplane in an attempt to increase airspeed. Unable to maintain altitude, the autopilot disengaged, at which point three human pilots were not able to correct for the error.

Varela and his research group focused on failure of the airspeed sensors. In the event of a pitot tube failure, airspeed can be accurately calculated using groundspeed and wind speed data gathered from onboard instruments that monitor GPS satellites, and weather forecasting information obtained prior to the flight. The relationship between the three data streams provided the group with an opportunity.

“If we can capture the mathematical relationship between the data streams, we can look at the patterns that arise upon known failures, which we call ‘error signatures,’” Varela said. “Then we can say ‘oh, this anomaly in the data corresponds to a known hardware failure. We know what is happening.’”

The group created a programming language called the “ProgrammIng Language for spatiO-Temporal data Streaming applications,” or “PILOTS,” and used it to write a program that examines the three data streams and searches for an error signature. If a signature is detected, the system corrects the error using data from the other two streams. In test runs, the PILOTS program – which uses about 30 lines of high-level code to govern a constant analysis of the data – prevented the AF 447 crash.

“We put the data from the black box of this Air France flight in our model, and in five seconds we were able to detect that the pitot tubes had iced, and we were able to compute the correct airspeed,” said Varela. “During the actual flight, the pitot tubes were only iced for 40 seconds, but by the time they were functioning properly again, the plane was descending at about 10,000 feet per minute.”

Varela said the approach has many other applications. In the context of autopilot systems, Varela said active data could potentially prevent errors like those behind the 2005 crash of Tuninter Flight 1153, in which pilots trusted a faulty fuel indicator, and could aid pilots in situations like the 2009 controlled ditch of US Airways Flight 1549 into the Hudson River.

Varela said the concept could also be helpful in other applications that rely on sensors, such as healthcare, where sensors used to collect data from patients could detect early signs of seizures or heart attacks based on patterns in the data.

Mary Martialay | newswise

Further reports about: Atlantic Autopilot Crash Flight Ocean Polytechnic RPI errors failure lines programming tubes

More articles from Information Technology:

nachricht Computing at the Speed of Light
22.05.2015 | University of Utah

nachricht NOAA's GOES-R satellite begins environmental testing
22.05.2015 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>