Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced Autopilot System Could Help Prevent Accidents Like 2009 Air France 447 Crash

03.04.2014

Research by Rensselaer Polytechnic Institute Professor Carlos Varela Develops “Active Data” System

Thirty lines of computer code might have saved Air France flight 447, and 228 passengers and crew aboard, from plunging into the Atlantic Ocean on June 1, 2009, according to new research by Carlos Varela, an associate professor of computer science at Rensselaer Polytechnic Institute. Varela and his research group have developed a computer system that detects and corrects faulty airspeed readings, such as those that contributed to the AF447 crash. Their approach to detecting errors could be applicable in many systems that rely on sensor readings.


GNU Free Documentation License Copyright © 2007 David Monniaux

Pitot tube from an Airbus A380.

“During this flight, important sensors failed, and reported erroneous data. But the autopilot didn’t know that, and it acted as if the data were correct,” said Varela. “We have computers that can beat the best human Jeopardy! players, and yet we rely on these relatively weak autopilot systems to safeguard hundreds of people on each flight. Why don’t we add more intelligence to autopilot systems?”

Varela’s research, aimed at developing “active data,” was funded by the Air Force Office of Scientific Research under the Dynamic Data Driven Application Systems (DDDAS) program. The goal of the grant is to develop mathematical and programming elements that enable otherwise passive data systems to search for patterns and relationships, and discover knowledge in data streams. Varela, who is himself a pilot, recognized that robust “active data” systems could have prevented the crash of flight AF447. Shigeru Imai, a computer science graduate student, originally presented their research and results at the 2nd International Conference Big Data Science and Engineering in December 2013.

AF447 crashed into the Atlantic Ocean more than 400 miles off Brazil’s northeastern coast. When recovered, the “black box” flight recorders revealed a chain of events beginning with erroneous readings from the pitot tubes – instruments that use air pressure to calculate airspeed. The pitot tubes, presumably blocked by ice, reported a drop in airspeed from 461 to 182 knots. The autopilot, unaware of the error, lowered the nose of the airplane in an attempt to increase airspeed. Unable to maintain altitude, the autopilot disengaged, at which point three human pilots were not able to correct for the error.

Varela and his research group focused on failure of the airspeed sensors. In the event of a pitot tube failure, airspeed can be accurately calculated using groundspeed and wind speed data gathered from onboard instruments that monitor GPS satellites, and weather forecasting information obtained prior to the flight. The relationship between the three data streams provided the group with an opportunity.

“If we can capture the mathematical relationship between the data streams, we can look at the patterns that arise upon known failures, which we call ‘error signatures,’” Varela said. “Then we can say ‘oh, this anomaly in the data corresponds to a known hardware failure. We know what is happening.’”

The group created a programming language called the “ProgrammIng Language for spatiO-Temporal data Streaming applications,” or “PILOTS,” and used it to write a program that examines the three data streams and searches for an error signature. If a signature is detected, the system corrects the error using data from the other two streams. In test runs, the PILOTS program – which uses about 30 lines of high-level code to govern a constant analysis of the data – prevented the AF 447 crash.

“We put the data from the black box of this Air France flight in our model, and in five seconds we were able to detect that the pitot tubes had iced, and we were able to compute the correct airspeed,” said Varela. “During the actual flight, the pitot tubes were only iced for 40 seconds, but by the time they were functioning properly again, the plane was descending at about 10,000 feet per minute.”

Varela said the approach has many other applications. In the context of autopilot systems, Varela said active data could potentially prevent errors like those behind the 2005 crash of Tuninter Flight 1153, in which pilots trusted a faulty fuel indicator, and could aid pilots in situations like the 2009 controlled ditch of US Airways Flight 1549 into the Hudson River.

Varela said the concept could also be helpful in other applications that rely on sensors, such as healthcare, where sensors used to collect data from patients could detect early signs of seizures or heart attacks based on patterns in the data.

Mary Martialay | newswise

Further reports about: Atlantic Autopilot Crash Flight Ocean Polytechnic RPI errors failure lines programming tubes

More articles from Information Technology:

nachricht World first demo of labyrinth magnetic-domain-optical Q-switched laser
28.07.2016 | Toyohashi University of Technology

nachricht New movie screen allows for glasses-free 3-D
26.07.2016 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>