Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering Team Explores Power of the Mind; Testing How Mere Thoughts Can Operate Computers and More

01.02.2010
John LaRocco would make M. Night Shyamalan proud.

On any given day, in the heart of a lab in the College of Engineering at Rowan University, LaRocco can be found in front of a computer, electrodes poking out from the black Lycra-like cap that covers his head, Velcroed securely under his chin.

No, the 23-year-old from Washington Township, N.J., is not prepping for suspense director Shyamalan’s next blockbuster: the grad student in electrical and computer engineering actually is at work as part of a team exploring brain/computer interfaces. Simply put — very simply put — he’s working on ways that people can use their minds to power a computer and other technology to complete a variety of actions.

On a recent day, LaRocco used his thoughts to move a ball into a box on the computer screen and to spell out a name. He wasn’t flawless — he had to mentally power the computer to fix a mistake here and there — but in short order he could propel the ball into the box and get the name just right without laying a finger on the keyboard.

Key to his effort was that cap, called an electrode cap, which has 40 electrodes that connect to the skin on his head, a thick layer of gel acting as a conduit and connector between man and device. Equally important was some very intricate data analysis software. Strategically placed, the electrodes produce signals that correspond to parts of the brain that relate to specific functions. The electrodes connect to a 40-channel electroencephalogram (EEG) system that displays the electrical activity of the brain, by picking up signals from the user’s brain and amplifying and relaying those signals to an attached computer.

In short, what a user thinks is encoded in the EEG signals and transferred via electrodes to the EEG equipment to the computer. In LaRocco’s recent demonstration, when he thought of a specific action — in this case squeezing his hands — the ball would move up, and when he thought of another action — kicking his feet — the ball would move down. He’s learned little tricks as he has practiced, such as avoiding blinking and trying not to tighten his jaw since both actions seem to interfere with the brain/computer connection.

LaRocco is working with fellow ECE grad student James Ethridge, 26, of South Philadelphia and Glassboro, N.J., on the project under the guidance of Dr. Robi Polikar, a nationally recognized engineering professor with a long history of exploring the possibilities of the mind, including research on Alzheimer’s disease funded by the National Institutes of Health's National Institute on Aging.

Explained Polikar of his latest project: “The brain/computer interface in general allows you to control a device using your thoughts. The device can be mechanical, like a joystick, computer cursor or keyboard. The moment that you can create a control signal, you can control anything.”

Using thoughts to control the computer involves the subject stimulating a pattern in an EEG signal. For instance, when LaRocco wanted to select a letter in the name he was trying to spell he’d look at a matrix of flashing letters that contains the entire alphabet, and count every time the desired letter flashed. That counting registered in his brain waves and generated a pattern that the team’s data analysis software recognized to represent the letter he wanted to capture.

Rowan is new to the brain/computer field, and it’s a field that is growing. Brain/computer interfaces may have many applications in the future, some which may benefit security and health care. The research may have other applications as well, such as programming a robot to vacuum the den, improving gaming devices and running a smart house.

“There’s no one single end goal, but there are many applications,” said LaRocco, who hopes to pursue a Ph.D. in engineering and is interested in prosthetic and biofeedback devices. For example, he said, the military could use the system to ensure pilots are properly trained, people dealing with paralysis could use their thoughts to complete tasks such as moving robotic limbs and motorized wheelchairs, and security personnel could employ such a technology as a more accurate lie detector.

LaRocco is focusing on the brain/computer interface for his master’s thesis, exploring whether individuals who use relaxation techniques like tai chi and meditation can better manipulate and control their thoughts than those who do not pursue such techniques.

Ethridge has been focusing on how the system works, providing the technical support. He's interested in working in the field of signal processing and pattern recognition and also hopes to earn his doctorate in engineering.

“It’s a challenging project,” Ethridge said. “I like the fact that I am working on something that can improve the quality of life. The big draw for using the EEG is it’s noninvasive and hence doesn’t require surgery.”

Patricia Quigley | Newswise Science News
Further information:
http://www.rowan.edu

More articles from Information Technology:

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

Understanding animal social networks can aid wildlife conservation

23.06.2017 | Ecology, The Environment and Conservation

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>