Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Data storage: Shingled tracks stack up

Simply changing the pattern by which data is recorded may lead to increased hard drive capacities

Modern hard drive technology is reaching its limits. Engineers have increased data-storage capacities by reducing the widths of the narrow tracks of magnetic material that record data inside a hard drive. Narrowing these tracks has required a concordant reduction in the size of the magnetic write head — the device used to create them.

However, it is physically difficult to reduce the size of write heads any further. Kim Keng Teo and co-workers at the A*STAR Data Storage Institute, Singapore, and the Niigata Institute of Technology, Japan, have recently performed an analysis that highlights the promise of an alternative approach, which may sidestep this problem completely.

In a conventional hard drive, a write head stores data by applying a magnetic field to a series of parallel, non-overlapping tracks. Halving the width of the track effectively doubles the data-storage capacity, but also requires the size of the write head to be halved. The head therefore produces less magnetic field than is needed to enable stable data storage. This is because the small magnetic grains that are characteristic of modern hard drive media need to be thermally stable at room temperature.

Shingled magnetic recording represents a step towards solving this problem as it allows for narrower track widths without smaller write heads. Rather than writing to non-overlapping tracks, the approach overlaps tracks just as shingles on a roof overlap (see image). Tracks are written in a so-called 'raster' pattern, with new data written to one side only of the last-written track.

Teo and co-workers analyzed the scaling behavior of this approach by using both numerical analysis and experimental verification. Their results showed that the size of the data track is not limited by the size of the write head, as in conventional hard drives. Instead, the track size is limited by the size of the magnetic read head, and by the ‘erase bandwidth’, which represents the portion of the track edge that is affected by adjacent tracks.

“This is a paradigm shift for the industry,” says Teo. “A relatively small difference in the way that writing occurs calls for a completely new approach to head design.” Teo expects the shingled approach to be a useful stop-gap measure prior to the arrival of more advanced, next-generation technologies in the next decade or so that will apply more radical modifications to the hard drive such as the use of heat to assist the write head.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Teo, K. K., Elidrissi, M. R., Chan, K. S. & Kanai, Y. Analysis and design of shingled magnetic recording systems. Journal of Applied Physics 111, 07B716 (2012).

A*STAR Research | Research asia research news
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>