Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyberinfrastructure to Meet Peak Demand for Emergency Data in Rural Areas

23.03.2011
Ahead of the next fire season in parched areas of southern California, research groups at the University of California, San Diego are building a scalable computer infrastructure to provide better access to camera feeds from rural areas when fires, earthquakes, flash floods or other natural disasters hit San Diego County.

“San Diegans need somewhere to turn when a natural disaster hits a rural area nearby, in order to make better decisions about what to do next,” said Hans-Werner Braun, a research scientist at the San Diego Supercomputer Center (SDSC) and director of its Applied Network Research group, which operates the High Performance Wireless Research and Education Network (HPWREN).

“Until now we have been able to provide that service covering large parts of San Diego’s back-country, but now we need to ensure that during the next crisis, peak demand for our data will not swamp our ability to keep the camera feeds up and running.”

The UC San Diego division of the California Institute for Telecommunications and Information Technology (Calit2) and the National Science Foundation-funded HPWREN are partnering on the new project.

“Calit2 is enriching situational awareness in rural San Diego not just for those who live there, as well as their friends and family elsewhere, but also for emergency responders who need to know the situation on the ground before they arrive on the scene,” said Calit2 director Larry Smarr. “HPWREN is a tremendous asset, and with Calit2 providing a more scalable data server architecture and backend with additional hardware, the network can serve the needs of many more people and agencies – not just during wildfires, but in other emergencies as well.”

Approximately 1,000 people visit HPWREN’s web page to view camera feeds on a typical day. On a not-so-typical day – like when snow recently blanketed large swathes of rural San Diego mountaintops – the number of visitors quadrupled.

Braun compares that with what happened during the 2007 Harris Fire. “We ended up at the peak with roughly 50,000 visitors in a single day, and they downloaded more than 70 gigabytes of data from a single server,” he said. “Keep in mind that every page visit may return 30, 40 or 50 items, or ‘hits’, so those peak loads can overwhelm a server. We know that a lot of people were unable to get through on their first try, so they had to keep trying if it was critical to know how far the flames had spread, and to know whether their homes were in the line of fire. It’s very hard to optimize for a system that can jump up to 50 times normal daily users for brief periods of time – and you don’t know which day the disaster will strike."

After HPWREN partnered last October with the County of San Diego and Calit2 on the FireSight project (http://www.calit2.net) to deploy new cameras on Mt. Woodson, Red Mountain (near Fallbrook) and elsewhere, it became clear that enhancing the camera network was not enough. It had to be able to withstand an onslaught of visitors to the website.

Calit2 proposed to HPWREN’s Braun that the institute dedicate server hardware from its NSF-funded GreenLight project (http://greenlight.calit2.net) to handle the peak loading. The project would also help the GreenLight project by providing another application type that can be tracked for its energy usage. Noted GreenLight principal investigator Tom DeFanti: “We were able to spend significant GreenLight funds for this because of the opportunity for energy monitoring of at-scale, broad-interest services.”

The solution devised by Calit2 engineers, including Greg Hidley, Brian Dunne, Joe Keefe and Chris Misleh, is fully scalable, and robust enough to handle any foreseeable response to wildfires or other visible hazards. “The HPWREN and GreenLight teams developed a strategy to improve access to HPWREN camera data,” said Hidley, chief engineer on the GreenLight project. “Our team put together an infrastructure upgrade implementation plan for this strategy designed to improve performance, control and reliability of HPWREN data access as well as provide improved infrastructure reliability and data redundancy.”

The hardware provided and set up by Calit2 includes multiple Sun SunFire 4540 high-performance storage servers (Thumpers), multiple 10 Gigabits-per-second network paths to Calit2 HPWREN data, as well as an A10 Load Balancer, with RAM Cache, compression offloads, TCP optimizations and simultaneous connectivity to multiple resource servers.

Some of the most vivid images used on local TV broadcasts during the Harris Fire were from HPWREN’s cameras, most of which are refreshed every two minutes. HPWREN can then string together those images to create time-lapse animations of the progress of a fire over time. In the Harris Fire, neighborhood blogs in the Jamul area that linked to HPWREN’s camera feeds were a lifeline, especially at times when local TV crews were not on the scene. As local resident Tom Dilatus told a writer, the cameras were what kept people in his neighborhood sane: “They were the only reliable source of information about where the fire was burning.”

For now, HPWREN will continue to host content on its original server, while the scalable server complex at Calit2 hosts a mirror site.

Calit2 copies HPWREN content from HPWREN cameras via iRODS, a second-generation data grid system, to a Calit Sun Thumper, which then replicates it on three other Thumpers (two in Calit2’s server room in Atkinson Hall, and one in GreenLight’s SunMD modular datacenter adjacent to the School of Pharmacy and Pharmaceutical Sciences).

All the Thumpers are running on the NSF-funded, Calit2-led OptIPuter (http://www.optiputer.net/) ultra-broadband network linking major research buildings on the UCSD campus. Web servers have been setup on the Thumpers and the A10 load balancer was installed to distribute web requests across multiple servers. “In addition to pulling content from multiple servers, increasing speed and availability,” explained Hidley, “the load balancer can optimize TCP traffic as well as provide caching and data-compression offloading to improve performance. The load balancer can also prioritize user requests via IP addresses, giving access priority and predictable response to emergency responders.”

The new cyberinfrastructure should be able to respond to hundreds of thousands of visitors, and scale even higher on a moment’s notice with the addition of new Thumpers.

“It’s not just creating redundancy in the system or playing the role of backup, although that is part of it in the short run,” said Braun. “Scalable servers are much better able to distribute the content, so over time the scalable system will eventually become the main site.”

The launch announced today is a beta deployment of the system, but consumers can already visit the site and download data. The engineers still want to put the system through its paces while mimicking the load factors to be expected in a large-scale disaster scenario. “We are finalizing the stress testing on a portion of the back end,” said Calit2’s Joe Keefe. “We are currently in a staging phase, and we should be able to fully test a complete load balancing structure very soon.”

“We expect significant improvement in performance, especially during large-scale events,” concluded HPWREN’s Braun. “Eventually we look forward to integrating more environmental sensors, not just cameras, into the network. We could integrate various other kinds of environmental sensors to present a collated view of complex situations. Examples are water and air quality, meteorological data, and seismic data. Many such sensors are already in operation on HPWREN.”

Doug Ramsey | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>