Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computing in a molecule

22.12.2008
Over the last 60 years, ever-smaller generations of transistors have driven exponential growth in computing power. Could molecules, each turned into miniscule computer components, trigger even greater growth in computing over the next 60?

Atomic-scale computing, in which computer processes are carried out in a single molecule or using a surface atomic-scale circuit, holds vast promise for the microelectronics industry.

It allows computers to continue to increase in processing power through the development of components in the nano- and pico scale. In theory, atomic-scale computing could put computers more powerful than today’s supercomputers in everyone’s pocket.

“Atomic-scale computing researchers today are in much the same position as transistor inventors were before 1947. No one knows where this will lead,” says Christian Joachim of the French National Scientific Research Centre’s (CNRS) Centre for Material Elaboration & Structural Studies (CEMES) in Toulouse, France.

Joachim, the head of the CEMES Nanoscience and Picotechnology Group (GNS), is currently coordinating a team of researchers from 15 academic and industrial research institutes in Europe whose groundbreaking work on developing a molecular replacement for transistors has brought the vision of atomic-scale computing a step closer to reality. Their efforts, a continuation of work that began in the 1990s, are today being funded by the European Union in the Pico-Inside project.

In a conventional microprocessor – the “motor” of a modern computer – transistors are the essential building blocks of digital circuits, creating logic gates that process true or false signals. A few transistors are needed to create a single logic gate and modern microprocessors contain billions of them, each measuring around 100 nanometres.

Transistors have continued to shrink in size since Intel co-founder Gordon E. Moore famously predicted in 1965 that the number that can be placed on a processor would double roughly every two years. But there will inevitably come a time when the laws of quantum physics prevent any further shrinkage using conventional methods. That is where atomic-scale computing comes into play with a fundamentally different approach to the problem.

“Nanotechnology is about taking something and shrinking it to its smallest possible scale. It’s a top-down approach,” Joachim says. He and the Pico-Inside team are turning that upside down, starting from the atom, the molecule, and exploring if such a tiny bit of matter can be a logic gate, memory source, or more. “It is a bottom-up or, as we call it, 'bottom-bottom' approach because we do not want to reach the material scale,” he explains.

Joachim’s team has focused on taking one individual molecule and building up computer components, with the ultimate goal of hosting a logic gate in a single molecule.

How many atoms to build a computer?

“The question we have asked ourselves is how many atoms does it take to build a computer?” Joachim says. “That is something we cannot answer at present, but we are getting a better idea about it.”

The team has managed to design a simple logic gate with 30 atoms that perform the same task as 14 transistors, while also exploring the architecture, technology and chemistry needed to achieve computing inside a single molecule and to interconnect molecules.

They are focusing on two architectures: one that mimics the classical design of a logic gate but in atomic form, including nodes, loops, meshes etc., and another, more complex, process that relies on changes to the molecule’s conformation to carry out the logic gate inputs and quantum mechanics to perform the computation.

The logic gates are interconnected using scanning-tunnelling microscopes and atomic-force microscopes – devices that can measure and move individual atoms with resolutions down to 1/100 of a nanometre (that is one hundred millionth of a millimetre!). As a side project, partly for fun but partly to stimulate new lines of research, Joachim and his team have used the technique to build tiny nano-machines, such as wheels, gears, motors and nano-vehicles each consisting of a single molecule.

“Put logic gates on it and it could decide where to go,” Joachim notes, pointing to what would be one of the world’s first implementations of atomic-scale robotics.

The importance of the Pico-Inside team’s work has been widely recognised in the scientific community, though Joachim cautions that it is still very much fundamental research. It will be some time before commercial applications emerge from it. However, emerge they all but certainly will.

“Microelectronics needs us if logic gates – and as a consequence microprocessors – are to continue to get smaller,” Joachim says.

The Pico-Inside researchers, who received funding under the ICT strand of the EU’s Sixth Framework Programme, are currently drafting a roadmap to ensure computing power continues to increase in the future.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90295

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>