Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists develop tool to make the Internet of Things safer

03.06.2014

Computer scientists at the University of California, San Diego, have developed a tool that allows hardware designers and system builders to test security- a first for the field. One of the tool’s potential uses is described in the May-June issue of IEEE Micro magazine.

“The stakes in hardware security are high”, said Ryan Kastner, a professor of computer science at the Jacobs School of Engineering at UC San Diego. 


From left: Ph.D. student Jason Oberg, computer science professor Ryan Kastner and postdoctoral research Jonathan Valamehr.

There is a big push to create the so-called Internet of Things, where all devices are connected and communicate with one another. As a result, embedded systems—small computer systems built around microcontrollers—are becoming more common. But they remain vulnerable to security breaches. Some examples of devices that may be hackable: medical devices, cars, cell phones and smart grid technology.

“Engineers traditionally design devices to be fast and use as little power as possible,” said Jonathan Valamehr, a postdoctoral researcher in the Department of Computer Science and Engineering at UC San Diego. “Oftentimes, they don’t design them with security in mind.”

... more about:
»Device »Electrical »Flow »Safety »Science »Security »Tracking »Vehicle »pieces »safer

The tool, based on the team’s research on Gate-level Information Flow Tracking, or GLIFT, tags critical pieces in a hardware’s security system and tracks them. The tool leverages this technology to detect security-specific properties within a hardware system. For example, the tool can make sure that a cryptographic key does not leak outside a chip’s cryptographic core.

There are two main threats in hardware security. The first is confidentiality. In some types of hardware, one can determine a device’s cryptographic key based on the amount of time it takes to encrypt information. The tool can detect these so-called timing channels that can compromise a device’s security. The second threat is integrity, where a critical subsystem within a device can be affected by non-critical ones. For example, a car’s brakes can be affected by its CD player. The tool can detect these integrity violations as well.

Valamehr, Kastner, and Ph.D. candidate Jason Oberg started a company named Tortuga Logic to commercialize this technology. The company is currently working with two of the top semiconductor companies in the world. Their next step is to focus on medical devices, computers in cars, and military applications.

The team recently were awarded a $150,000 grant from the National Science Foundation to grow their business and further their research.

Tortuga Logic is a member of the Medical Device Innovation Safety and Security committee, a nonprofit professional organization and of the Vehicle Electrical System Security Committee.

Media Contacts

Ioana Patringenaru
Jacobs School of Engineering
Phone: 858-822-0899
ipatrin@ucsd.edu

Ioana Patringenaru | Eurek Alert!
Further information:
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1525

Further reports about: Device Electrical Flow Safety Science Security Tracking Vehicle pieces safer

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>