Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer models show device size matters

14.02.2014
Simulating the magnetic properties of nanostructures could help to design electronic memories with increased storage capacity

Scientists hope that patterning magnetic materials with nanometer-scale structures will help the development of non-volatile electronic memories with large storage capacities and no moving parts. So-called magnetoresistive random access memories are one example. But material properties at such tiny dimensions are not always the same as those of larger structures.


The ‘in-plane’ ferromagnetic-resonance response of a magnetic nanostructure changes with device size —shown here in the simulation results by the rapidly varying colors. The ‘out-of-plane’ response, on the other hand, is relatively constant.

© 2014 A*STAR Data Storage Institute

Kwaku Eason, Maria Sabino and their co-workers from the A*STAR Data Storage Institute, A*STAR National Metrology Centre and National University of Singapore have now modeled the changes in the characteristics of magnetic materials as devices are reduced in size to the nanoscale1.

The researchers focused their attention on modeling a powerful and widespread tool for characterizing magnetic materials called ferromagnetic resonance (FMR). FMR measures the absorption of microwave radiation by a thin sample. Knowing which microwave frequencies are absorbed the most can provide a number of key material properties. One such crucial property is the damping parameter, which is an indicator of how quickly a memory made from the magnetic material can store and release data.

The team employed a mathematical tool, known as the finite element method, to simulate a simple cylindrical nanodevice in all three dimensions. By calculating the energy levels of the device in an external magnetic field, the team could predict the FMR signal for devices of varying sizes.

The researchers compared their simulations to experimental data obtained on nanodisks made of a nickel–iron alloy, known as permalloy, and found good agreement for all device sizes. “Other groups have provided additional experimental results that further confirm the accuracy of our predictions,” says Eason.

The ability to predict the damping parameter of nanostructured magnetic materials is important because it is difficult to experimentally measure this property — partly because FMR signals from tiny targets are usually weak. Instead, researchers must study much larger devices and hope that the damping parameter is similar for nanostructures.

Recent experiments have conflicted on this point of scale. “One research group found from their experiments that device size does not matter in the damping measurement, while another group found that it does,” explains Eason. “We have resolved this dilemma: it turns out that they were both right.” Sabino adds: “The results were contradictory because of the different material properties.”

The simulations showed that the ‘in-plane’ magnetic properties are sensitive to the dimensions of the device, whereas the ‘out-of-plane’ properties are constant (see image).

“Contributing to a clear understanding of this effect is one of the most gratifying parts of this work,” says Eason.

The A*STAR-affiliated researchers contributing to this research are from the Singapore-based Data Storage Institute and the National Metrology Centre

Journal information

Eason, K., Sabino, M. P. R. G., Tran, M. & Liew, Y. F. Origins of magnetic damping measurement variations using ferromagnetic resonance for nano-sized devices. Applied Physics Letters 102, 232405 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com
http://www.research.a-star.edu.sg/research/6881

More articles from Information Technology:

nachricht Micropatterning OLEDs using electron beam technology
27.04.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Quantum computing closer as RMIT drives towards first quantum data bus
18.04.2016 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>