Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer models show device size matters

14.02.2014
Simulating the magnetic properties of nanostructures could help to design electronic memories with increased storage capacity

Scientists hope that patterning magnetic materials with nanometer-scale structures will help the development of non-volatile electronic memories with large storage capacities and no moving parts. So-called magnetoresistive random access memories are one example. But material properties at such tiny dimensions are not always the same as those of larger structures.


The ‘in-plane’ ferromagnetic-resonance response of a magnetic nanostructure changes with device size —shown here in the simulation results by the rapidly varying colors. The ‘out-of-plane’ response, on the other hand, is relatively constant.

© 2014 A*STAR Data Storage Institute

Kwaku Eason, Maria Sabino and their co-workers from the A*STAR Data Storage Institute, A*STAR National Metrology Centre and National University of Singapore have now modeled the changes in the characteristics of magnetic materials as devices are reduced in size to the nanoscale1.

The researchers focused their attention on modeling a powerful and widespread tool for characterizing magnetic materials called ferromagnetic resonance (FMR). FMR measures the absorption of microwave radiation by a thin sample. Knowing which microwave frequencies are absorbed the most can provide a number of key material properties. One such crucial property is the damping parameter, which is an indicator of how quickly a memory made from the magnetic material can store and release data.

The team employed a mathematical tool, known as the finite element method, to simulate a simple cylindrical nanodevice in all three dimensions. By calculating the energy levels of the device in an external magnetic field, the team could predict the FMR signal for devices of varying sizes.

The researchers compared their simulations to experimental data obtained on nanodisks made of a nickel–iron alloy, known as permalloy, and found good agreement for all device sizes. “Other groups have provided additional experimental results that further confirm the accuracy of our predictions,” says Eason.

The ability to predict the damping parameter of nanostructured magnetic materials is important because it is difficult to experimentally measure this property — partly because FMR signals from tiny targets are usually weak. Instead, researchers must study much larger devices and hope that the damping parameter is similar for nanostructures.

Recent experiments have conflicted on this point of scale. “One research group found from their experiments that device size does not matter in the damping measurement, while another group found that it does,” explains Eason. “We have resolved this dilemma: it turns out that they were both right.” Sabino adds: “The results were contradictory because of the different material properties.”

The simulations showed that the ‘in-plane’ magnetic properties are sensitive to the dimensions of the device, whereas the ‘out-of-plane’ properties are constant (see image).

“Contributing to a clear understanding of this effect is one of the most gratifying parts of this work,” says Eason.

The A*STAR-affiliated researchers contributing to this research are from the Singapore-based Data Storage Institute and the National Metrology Centre

Journal information

Eason, K., Sabino, M. P. R. G., Tran, M. & Liew, Y. F. Origins of magnetic damping measurement variations using ferromagnetic resonance for nano-sized devices. Applied Physics Letters 102, 232405 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com
http://www.research.a-star.edu.sg/research/6881

More articles from Information Technology:

nachricht A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips
28.05.2015 | University of Wisconsin-Madison

nachricht New transregional special research field at the universities of Stuttgart and Constance
28.05.2015 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>