Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chips as mini Internets

11.04.2012
The data-routing techniques that undergird the Internet could increase the efficiency of multicore chips while lowering their power requirements.

Computer chips have stopped getting faster. In order to keep increasing chips’ computational power at the rate to which we’ve grown accustomed, chipmakers are instead giving them additional “cores,” or processing units.

Today, a typical chip might have six or eight cores, all communicating with each other over a single bundle of wires, called a bus. With a bus, however, only one pair of cores can talk at a time, which would be a serious limitation in chips with hundreds or even thousands of cores, which many electrical engineers envision as the future of computing.

Li-Shiuan Peh, an associate professor of electrical engineering and computer science at MIT, wants cores to communicate the same way computers hooked to the Internet do: by bundling the information they transmit into “packets.” Each core would have its own router, which could send a packet down any of several paths, depending on the condition of the network as a whole.

At the Design Automation Conference in June, Peh and her colleagues will present a paper she describes as “summarizing 10 years of research” on such “networks on chip.” Not only do the researchers establish theoretical limits on the efficiency of packet-switched on-chip communication networks, but they also present measurements performed on a test chip in which they came very close to reaching several of those limits.

Last stop for buses

In principle, multicore chips are faster than single-core chips because they can split up computational tasks and run them on several cores at once. Cores working on the same task will occasionally need to share data, but until recently, the core count on commercial chips has been low enough that a single bus has been able to handle the extra communication load. That’s already changing, however: “Buses have hit a limit,” Peh says. “They typically scale to about eight cores.” The 10-core chips found in high-end servers frequently add a second bus, but that approach won’t work for chips with hundreds of cores.

For one thing, Peh says, “buses take up a lot of power, because they are trying to drive long wires to eight or 10 cores at the same time.” In the type of network Peh is proposing, on the other hand, each core communicates only with the four cores nearest it. “Here, you’re driving short segments of wires, so that allows you to go lower in voltage,” she explains.

In an on-chip network, however, a packet of data traveling from one core to another has to stop at every router in between. Moreover, if two packets arrive at a router at the same time, one of them has to be stored in memory while the router handles the other. Many engineers, Peh says, worry that these added requirements will introduce enough delays and computational complexity to offset the advantages of packet switching. “The biggest problem, I think, is that in industry right now, people don’t know how to build these networks, because it has been buses for decades,” Peh says.

Forward thinking

Peh and her colleagues have developed two techniques to address these concerns. One is something they call “virtual bypassing.” In the Internet, when a packet arrives at a router, the router inspects its addressing information before deciding which path to send it down. With virtual bypassing, however, each router sends an advance signal to the next, so that it can preset its switch, speeding the packet on with no additional computation. In her group’s test chips, Peh says, virtual bypassing allowed a very close approach to the maximum data-transmission rates predicted by theoretical analysis.

The other technique is something called low-swing signaling. Digital data consists of ones and zeroes, which are transmitted over communications channels as high and low voltages. Sunghyun Park, a PhD student advised by both Peh and Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering, developed a circuit that reduces the swing between the high and low voltages from one volt to 300 millivolts. With its combination of virtual bypassing and low-swing signaling, the researchers’ test chip consumed 38 percent less energy than previous packet-switched test chips. The researchers have more work to do, Peh says, before their test chip’s power consumption gets as close to the theoretical limit as its data transmission rate does. But, she adds, “if we compare it against a bus, we get orders-of-magnitude savings.”

Luca Carloni, an associate professor of computer science at Columbia University who also researches networks on chip, says “the jury is always still out” on the future of chip design, but that “the advantages of packet-switched networks on chip seem compelling.” He emphasizes that those advantages include not only the operational efficiency of the chips themselves, but also “a level of regularity and productivity at design time that is very important.” And within the field, he adds, “the contributions of Li-Shiuan are foundational.”

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>