Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big Data Allows Computer Engineers to Find Genetic Clues in Humans

30.03.2015

Big data: It’s a term we read and hear about often, but is hard to grasp. Computer scientists at Washington University in St. Louis’ School of Engineering & Applied Science tackled some big data about an important protein and discovered its connection in human history as well as clues about its role in complex neurological diseases.

Through a novel method of analyzing these big data, Sharlee Climer, PhD, research assistant professor in computer science, and Weixiong Zhang, PhD, professor of computer science and of genetics at the School of Medicine, discovered a region encompassing the gephyrin gene on chromosome 14 that underwent rapid evolution after splitting in two completely opposite directions thousands of years ago. Those opposite directions, known as yin and yang, are still strongly evident across different populations of people around the world today.


Climer/Zhang, Washington University in St. Louis

Yin-yang haplotypes arise when a stretch of DNA evolves to present two divergent forms. A group of engineers at Washington University in St. Louis showed a massive yin-yang haplotype pair encompassing the gene gephyrin on human chromosome 14. This image shows the states for markers in the region for 934 individuals in eight global populations. Dark blue and red horizontal lines in the yin-yang region represent carriers of two yin and two yang haplotypes, respectively, and light blue represents carriers of both haplotypes.

The results of their research, done with Alan Templeton, PhD, the Charles Rebstock professor emeritus in the Department of Biology in the College of Arts & Sciences, appear in the March 27 issue of Nature Communications.

The gephyrin protein is a master regulator of receptors in the brain that transmit messages. Malfunction of the protein has been associated with epilepsy, Alzheimer’s disease, schizophrenia and other neurological diseases. Additionally, without gephyrin, our bodies are unable to synthesize an essential trace nutrient.

The research team used big data from the International HapMap Project, a public resource of genetic data from populations worldwide designed help researchers find genes associated with human disease, as well as from the 1000 Genomes project, another public data source of sequenced human genomes. In total, they looked at the genetic data from 3,438 individuals.

When they analyzed the data, they made an interesting discovery in a sequence of markers, called a haplotype, enveloping the gephyrin gene: up to 80 percent of the haplotypes were perfect yin and yang types, or complete opposites of the other. They were able to trace the split back to what is known as the Ancestral haplotype, or that of the most recent common human ancestor.

“We observed that the Ancestral haplotype split into two distinct haplotypes and subsequently underwent rapid evolution, as each haplotype possesses about 140 markers that are different from the Ancestral haplotype,” Climer says. “These numerous mutations should have produced a large number of intermediate haplotypes, but the intermediates have almost entirely disappeared, and the divergent yin and yang haplotypes are prevalent in populations representing every major human ancestry.”

Using the data from the HapMap Project, they looked at the gephyrin region in several populations of people, including European, East and South Asian, and African heritage, and found variations in the haplotype frequencies of each of these populations. Those from African origin generally have more yang haplotypes, while those of European origin have more yin haplotypes. Those of Asian descent have nearly equal numbers of yin and yang haplotypes.

Humans carry pairs of chromosomes, and 30 percent of Japanese individuals carry two yin haplotypes or two yang haplotypes. Another 30 percent of these individuals possess both a yin and a yang haplotype, reflecting the roughly equal probability of inheriting either one.

To find this pattern within the huge datasets, the research team used a novel method to assess correlations between genetic markers called single nucleotide polymorphisms, or SNPs, which are variations in a DNA sequence that make humans different from each other.

The team’s method, called BlocBuster, computes correlations between each pair of SNPs, then builds a network of those correlations. By observing the network, researchers can see clusters of correlated markers.

“For example, you could build a Facebook network using all of your Facebook friends,” Climer says. “If two of your friends are friends with each other, you would connect them in the network. If you see that a cluster of people is interconnected with each other, they probably share something in common, such as a family relationship, a school, or some type of social interaction. Similarly, with an efficient algorithm and an adequate number of processors and time, we can look at every pair of SNPs, build these networks and observe clusters of interconnected SNPs.

“The BlocBuster approach is a paradigm shift from the conventional methods for genome-wide association studies, or popularly known as GWAS, where one or a few markers were examined at a time,” Zhang says. “It is truly a data mining technique for big data like those from HapMap and 1000 Genomes projects.”

The researchers also can design this approach to look at complex traits and diseases.

“BlocBuster is able to detect combinations of networked genetic markers that are characteristic of complex traits,” Zhang says. “It is suitable for analyzing traits, such as body weights, which are determined by multiple genetic factors, and genetic patterns in populations, such as the yin-yang haplotypes we discovered.”

Ultimately, they expect this method will shed light on the genetic roots of disease.

“Most complex diseases arise due to a group of genetic variations interacting together,” Climer says. “Different groups of people who get a disease may be affected by different groups of variations. There’s not enough power to see most of these intricate associations when looking at single markers one at a time. We’re taking a combinatorial approach — looking at combinations of markers together — and we’re able to see the patterns.”

###
Climer S, Templeton A, Zhang W. Human gephyrin is encompassed within giant functional noncoding yin-yang sequences. Nature Communications, March 27, 2015. 6:6534 doi: 10.1038/ncomms7534 (2015).

Funding for this research was provided by the National Institutes of Health (P50-GM65509, RC1-AR058681, R01-GM086412 and R-01-GM100364), the National Science Foundation (DBI-0743797) and the municipal government of Wuhan, Hubei, China.

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 91 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, more than 900 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners — across disciplines and across the world — to contribute to solving the greatest global challenges of the 21st century.

Contact Information
Julie Flory
Asst Vice Chancellor for Campus Communications
julie.flory@wustl.edu

Julie Flory | newswise

Further reports about: Big Data Communications Genetic HapMap Zhang computer science genetic data haplotype markers

More articles from Information Technology:

nachricht Drones learn to navigate autonomously by imitating cars and bicycles
23.01.2018 | Universität Zürich

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>