Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated Testing of Complex Web 2.0 Applications Prevents Security Vulnerabilities

01.03.2013
So far there are no methods to test complex web 2.0 applications systematically and at low cost for malfunctions and security vulnerabilities.
Therefore, computer scientists from Saarland University have developed a software system for checking complex web applications autonomously. They will show their technology on 5 March at the computer fair Cebit (Hall 9, booth F34). As of today the Federal Ministry of Economics and Technology is supporting the researchers in their effort to commercialize the technology by founding a spin-off.

“The police have discovered a new variant of internet fraud. The offender capitalizes on the complexity of social networks”, reported a newspaper a month ago in Southern Germany. Valentin Dallmeier, postdoc at the software engineering chair at Saarland University, is not surprised. He says that the methods that web developers and responsible project leaders rely on to try to find programming errors and security holes in web applications have been too ineffective and inefficient. “This is still done manually and therefore causes not only very high costs, but also high levels of risk for companies and the community,” Martin Burger explains. He works at the software engineering chair, too. Together the two postdocs want to change this serious deficit. Therefore they have developed the software system “Webmate”, which determines automatically why Web 2.0 applications fail.
For the transfer of the technology to a spin-off, they have just received 500,000 Euros from the national support program “EXIST” run by the Federal Ministry of Economics and Technology (BMWi). The program is aimed at improving the entrepreneurial environment at universities and research institutions and at increasing the number of technology- and knowledge-based business start-ups.

Computer scientists from Saarland University have developed a software system for checking complex web applications autonomously
bellhäuser - das bilderwerk

So called Web 2.0 applications run centrally on an online server. Therefore, in contrast to conventional programs, they are not installed on the user’s computer or laptop; instead, the user interacts with them via a web browser. In recent years, thanks to new web development technologies such as Asynchronous JavaScript and XML (AJAX), web applications can be used as smoothly as if they were installed on personal computers. AJAX takes care of organizing the transfer of data packets between the user’s computer and server in such a way that the delays incurred by the connection are barely noticeable. Hence, not only private users but also companies and the public sector are adopting web applications more and more frequently. However, news about data theft and malfunctions is also reported on a daily basis.

Dallmeier and Burger want to prevent such worst-case scenarios and other breakdowns. Businesses and their responsible web administrators will only have to type in their Web address. Afterwards the system discovers automatically how the different components of the application are connected to each other and via which menus, buttons, and other control panels the users are interacting with the application. Subsequently, it generates and executes test scenarios. If it discovers, for example, that the application is not compatible with a certain version of a browser, or a control panel no longer exists in a new version of the application, the system informs the developer immediately — likewise if a database is not connected, a server does not respond, or a link is dead. The web developer is able to repeat this test at any time.

Dallmeier, Burger and the three other persons planning to found the spin-off are sure that their technology will succeed. They estimate the market potential in Germany alone to be 120 million Euros annually.

Computer science research on the campus of Saarland University
The Department of Computer Science is not the only research institution which is exploring new aspects of computer science. Only a few yards from there, you can also find the Max Planck Institute for Computer Science, the Max Planck Institute for Software Systems, the Center for Bioinformatics, the Center for IT-Security, Privacy and Accountability, the German Research Center for Artificial Intelligence, the Intel Visual Computing Institute and the recently renewed Cluster of Excellence “Multimodal Computing and Interaction”.

For further information please contact:
Valentin Dallmeier
Tel: +49 681 302-70993
E-Mail: dallmeier@cs.uni-saarland.de

Gordon Bolduan, Science Communication
Cluster of Excellence “Multimodal Computing and Interaction”
Phone: +49 681 302-70741
During Cebit: +49 0511/ 89497024
E-Mail: gbolduan@mmci.uni-saarland.de

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de
http://www.st.cs.uni-saarland.de/webmate/

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>