Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic-level crystal gazing

11.04.2011
Revelation of the crystallization mechanism that enables fast writing of data to DVDs shows potential for quicker data storage in the future

Some 300 exabytes (3 × 1020 bytes) of information were stored in electronic media—magnetic disks and tapes or optical disks—throughout the world by 2007. Yet, the demand for electronic storage grows daily, driving an ever-increasing need to pack data into smaller volumes in quicker time.


Figure 1: Pulses of light alter the atomic bonds (red) in the material AIST, enabling quick storage and deletion of data. Copyright : 2011 Masaki Takata

By studying how laser pulses alter the atomic structure of data-storage materials, a research team in Japan has uncovered a fundamental mechanism that could aid in the design of even faster information storage in the future[1]. The finding was published by Masaki Takata from the RIKEN SPring-8 Center, Harima, Shinji Kohara from the Japan Synchrotron Radiation Research Institute/SPring-8, Noboru Yamada from Panasonic Corporation and a team of scientists from Japan, Germany and Finland.

Rewritable memory, such as the random-access memory found in computers or on DVDs, is based on a phase change in specific types of materials in which the atoms change from one stable arrangement to another. Pulses of laser light can induce a phase change, a process known as ‘writing,’ and the material’s phase can be identified by ‘reading’ its signature optical properties.

To provide the first full understanding of the atomic structure of one such phase-change material, AgInSbTe (AIST)—often used in rewritable DVDs—Takata and his colleagues combined state-of-the-art materials-analysis techniques and theoretical modeling. A pulse of light can change AIST from an amorphous state, in which the atoms are disordered, into a crystalline phase in which the atoms are form an ordered-lattice structure. This process of crystallization happens in just a few tens of nanoseconds: the faster the crystallization, the faster data can be written and erased. No-one understood, however, why phase changes in AIST were so fast.

The teams’ analyses and modeling showed that AIST crystallizes in a different way to other commercially available phase-change materials. They found that crystallization of AIST is a simple process: the laser light excites the bonding electrons and causes them to move. A central atom of antimony (Sb) switches between one long (amorphous) and one short (crystalline) bond without any bond breaking (Fig. 1). “We hope to verify this bond-interchange model in the near future,” says Takata. “Crystallization is the storage-rate-limiting process in all phase-change materials, and an atomistic understanding of it is essential.”

The researchers also discovered that the absence of cavities within the crystal structure contributes to the faster writing speeds on AIST. This contrasts starkly with the alternative material germanium antimony telluride in which 10% of lattice sites in are empty.

The corresponding author for this highlight is based at the Structural Materials Science Laboratory, RIKEN SPring-8 Center

to nanosecond recrystallization dynamics in AgInSbTe phase-change materials'
Journal information
[1] Matsunaga, T., Akola, J., Kohara, S., Honma, T., Kobayashi, K., Ikenaga, E., Jones, R.O., Yamada, N., Takata, M. & Kojima, R. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nature Materials 10, 129–134 (2011)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6562
http://www.researchsea.com

Further reports about: Atomic-level DVD RIKEN SPring-8 atomic structure laser light

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>